

API 653 Inspection of Above Ground Storage Tank T-1253

Client : Chemical Specialties (S) Pte Ltd

Location : 31 Ayer Merbau Road, Jurong Island

Project: Tank Inspection

Project No : LEADS-22-06

Report No : LEADS-22-0109

Date of

Inspection : 30 July 2022 to 20 August 2022

Table of Contents

1.0 Introduction

- 1.1 Works Brief
- 1.2 General Arrangement & Reference
 - 1.2.1 Reference Documents
- 1.3 Tank Suitability for Service Statement
 - 1.3.1 General Condition
 - 1.3.2 Structural Integrity
 - 1.3.3 Coating Integrity
 - 1.3.4 Hydraulic Integrity
- 1.4 Suitability for Service Determination
- 1.5 Inspector's Certification

2.0 Tank Summary

- 2.1 Project Scope
- 2.2 Tank Repair Definitions
- 2.3 Tank Repair Recommendations
- 2.4 Tank General Information
- 2.5 Tank Design Data

3.0 Inspection Checklists and Summary

- 3.1 Tank Online Inspection
 - 3.1.1 Diked Area and Containment Checklist
 - 3.1.2 Tank Foundation Checklist
 - 3.1.3 Shell External Checklist
 - 3.1.3.1 Shell Course Remaining Life Calculations
 - 3.1.4 Shell Appurtenances Checklist
 - 3.1.5 Access Structure Checklist
 - 3.1.6 Fixed Roof (Cone / Dome) Checklist
 - 3.1.6.1 Roof Plate Remaining Life Calculation
- 3.2 Tank Offline Inspection

- 3.2.1 External floating roof Checklist
- 3.2.2 Fixed Roof (Internal) Checklist
- 3.2.3 Internal Floating Roof Checklist
- 3.2.4 Shell (Internal) Checklist
- 3.2.5 Tank bottom and internal appurtenances Checklist
- 3.2.6 Tank bottom internal (Service Interval)

4.0 NDT Inspection Reports

- 4.1 Visual Inspection Photographs
- 4.2 UTG Inspection Report
- 4.3 PMP Report

5.0 Equipment and Personnel Certificates

- 5.1 Equipment Calibration
- 5.2 Personnel Certification

6.0 General Arrangement Drawing

7.0 Mechanical Calculation

Originated by	P Rajesh (API 653 Certificate: 74601)	Signature:
Approved by	Sudhan P (General Manager)	Signature:

1.0 Introduction

1.1 Works Brief

Leads was engaged as a third-party inspection company to carry out the inspection based on API 653 which encompasses below.

An American Petroleum Institute (API) 653 Tank External, Internal from manhole, Arc PMI, UTG & Mechanical Calculation for Tank T-1253 at CSL facility, Jurong Island, Singapore in July to August 2022 has been carried out. This inspection complied with the API 653 standard. NDT data gathered will be part of the final report.

This report is generated on data gathered from three locations: applicable codes, regulations, and laws; the observed field conditions existent during the API inspection; and material provided in written form by the facility, end-user, or client (e.g., as-builts, previous inspection reports, written transcriptions of conversations with the facility.)

This inspection report is based solely on empirically observable conditions observed during the inspection process and correspondence with the facility or end-user. Information not empirically observable or presented to us in the course of this inspection, but which may be relevant to the inspection's findings, have not been evaluated or included in this inspection. The API inspector bears no responsibility for findings which could only be ascertained by information not made available to the API inspector.

1.2 General Arrangement & Reference

This inspection report is prepared with a photo and name of each item and / or a location for reference. In addition, the report is also complemented with all the necessary equipment and personnel certification to ensure that the job was performed in line with the requirements. Please note the content of the final report and report reference numbers are number numerical in each NDT method, however they are grouped in this summary by NDT method so they may not be sequential in their grouping.

1.2.1 Reference Documents

- API 653 Above ground Storage Tank Inspection Code
- Leads NDT Technical Procedures
- Drawings: (TNK-GA-T1253 -001 Rev 0)

1.3 Tank Suitability for Service Statement

This report contains all the details and evaluation results used to arrive at this tank suitability for service determination. Based on the above findings and the detailed report below, we have determined that:

 The tank can continue to operate. However, recommendations are provided for further follow up.

1.3.1 General Condition

T-1253 is an aboveground storage tank that contains currently non-corrosive product. The tank is 21663 mm tall with a 5180 mm internal diameter.

1.3.2 Structural Integrity

We define tank structural integrity as the capability of the tank to remain freestanding, with or without product, under the conditions of its design basis. Structural attributes include the tank bottom, shell, roof and their attachments. Ultrasonic inspections of the shell were performed.

Based on our inspection of the accessible components and engineering evaluation,

Tank T-1253 is considered to have suitable structural integrity.

1.3.3 Coating Integrity

We define coating integrity as the interior wetted coating's ability to provide an impervious, completely continuous film barrier that prevents harmful environmental and service conditions corrosive agents to penetrate to the base metal, which could over time compromise hydraulic integrity.

Although corrosion and coating failures may not indicate structural failures; they present conditions which, in time, can lead to structural integrity failures. The coating inside this tank is not present, outside the integrity is not given.

Based on our inspection of the accessible components and engineering evaluation,
Tank T-1253 is considered to have suitable coating integrity.

1.3.4 Hydraulic Integrity

Not Applicable as no Pressure test was conducted during this scope.

1.4 Next Inspection Schedules

API 653 recommends the interval to the next internal inspection be determined based on known corrosion rates, but in no case shall the interval exceed 20 years from the date of inspection. When corrosion rates are not known or well established, API 653 recommends that the tank be inspected within 10 years. Based on the current calculated corrosion rates, the useful life of this tank does not exceed 20 years. We recommend the following scheduled inspections:

- API internal inspection (out-of-service) inspection should be scheduled at the earliest possible schedule to perform full bottom cone thickness for remaining life evaluation.
- API external inspection (in-service) inspection be conducted in accordance with API 653 requirements
 - no later than July 2027 (5 years from July-2022 inspection) for a visual inspection, and
 - no later than July 2037 (15 years from July-2022 inspection) for a UTG inspection of the shell & roof,

or sooner if a change in condition has occurred.

1.5 Inspector's Certification

I acknowledge that I am familiar with API Standard 653's provisions; the inspection and evaluation performed on Tank T-1253 at CSL and certify that the inspection was performed per the API Standard 653 provisions, good engineering practices, and with usual and customary care

2.0 Tank Summary

2.1 Project Scope

An out-of-service API 653 tank inspection has been performed on the tank T-1253. This tank inspection included visual inspection of the tank shell, tank appurtenances, roof, bottom plate (where accessible) and tank foundation. Following the API 653 inspection's completion, a preliminary findings report is provided detailing all tank conditions and repair recommendations.

2.2 Tank Repair Definitions

Mandatory Repairs – repairs that need to be completed before the tank can be returned to service. Mandatory Repairs consists of any failure / deficiency that hasbreached the hydraulic and/or structural integrity of the tank, and/or presents an imminent danger to personnel and/or adjacent structures.

Non-Mandatory Recommended Repairs Preceding Return-To-Service – repairs that do not meet the requirements of being a Mandatory Repair, but will help maintainor improve tank operability / serviceability, or else are required to meet current codes. Repairs noted under this category are recommended for performance prior to the tank being returned to service.

Future Non-Mandatory Recommended Repairs – repairs that do not meet the requirements of being a Mandatory Repair, but will help maintain or improve tank operability / serviceability, or else are required to meet current codes. Unlike the Non-Mandatory Recommended Repairs Preceding Return-To-Service, Future Non-Mandatory Recommended Repairs are not being recommended for performance prior to the tank being returned to service.

Recurring Maintenance Recommendations - actions that should be taken on arecurring basis

2.3 Tank Repair Recommendations

The API 653 inspection has resulted in the following repair conditions:

	Mandatory Tank Repairs Preceding Return To Service
1.1	None.
	Non-Mandatory Recommended Repairs Preceding Return-To-
	Service
II.1	None
	Future Non-Mandatory Recommended Repairs
III.1	Recommend to repair the damaged grouting.
III.2	Recommend to do surface preparation and repainting for Roof N4 nozzle.
	Recurring Maintenance Recommendations
IV.1	Let the fire and safety systems be checked on an annular base by a safety engineer.
IV.2	Perform proper housekeeping on a regular base.
IV.3	Perform visual and UT inspections as per Inspection Interval Recommendation.

2.4 Tank General Information:

Tank Installed in	2009 (from given drawing)
Tank Modified in	NA
Tank Coating - External	Yes
Tank Coating - Internal	No
Insulation	No
Support Type	Self-Supporting Cone Roof Tank
Does the tank has hold down bolts	Yes
Diameter of the hold down bolts	M24

2.5 Tank Design Data

DESIGN DATA						
EQUIPMENT ITEM NO		T-1253				
EQUIPMENT TYPE		CONE ROOF- SELF SUPPORTING TANK				
VESSEL TYPE		VERTICAL				
WIND SPEED	m/s	-				
WIND LOAD		-				
SEISMIC LOAD		NO				
		TANK				
MEDIUM		CAT 4 FLAMMABLE AND NON CORROSIVE MATERIAL				
DESIGN PRESSURE	kPa	10				
DESIGN TEMPERATURE	rc	160				
WORKING PRESSURE	kPa	MTA				
OPERATING TEMPERATURE		AMB				
MDMT	°C	NA				
MAWP	kPa	-				
HYDRO TEST PRESSURE	barg	-				
HYDRO TEST POSITION		VERTICAL				
JOINT EFFICIENCY		0.70				
INSULATION	mm	-				
CORROSION ALLOWANCE	mm	1				
QUANTITY	UNIT	1				
FABRICATED WEIGHT	KG	-				
EMPTY WEIGHT	KG	25,000				
OPERATING WEIGHT	KG	421,000				
SHOP HYDRO TEST WEIGHT	KG	425,000				
DESIGN SPECIFIC GRAVITY		-				
FLUID SPECIFIC GRAVITY		1.3				
GROSS CAPACITY	m³	400				
NET CAPACITY	m³	XXXX				
YEAR BUILT		2009				

3.0 Inspection Checklists and Summary

The following inspection summaries list all noted deficiencies and the governing criteria withwhich they fail to comply fully.

3.1 Tank Online Inspection

3.1.1 Diked Area and Containment - Checklist: Not Applicable

3.1.2 Tank Foundation - Checklist

1	Level survey required (base on visual planar tilt) C.1.1 & C.1.1.1:	2
2	Foundation (cracks, breaks, spalling):	2
3	Water ingress/egress/vegetation against bottom C.1.1.1	3
4	Indications of bottom leaks:	2
5	Bottom plate extension cond. (API 650 5.4.2, API 653 4.4.7.7):	2
6	Bottom plate extension welds (pitting, corrosion, undercut):	2
7	Earth grounding cables and connectors cond. (API 575. 7.2.5):	2
8	Tank settlement into pad C.1.1.2:	NE
9	Anchor bolt condition:	2

Legend:

3.1.3 Shell External - Checklist

1	Coating or painting on shell plates (blisters, peeling, stains):	2
2	Insulation (cracks, leaks, moisture retention):	N/A
3	Shell pitted or corroded (API 653. 4.3):	2
4	Deformation of shell (banding, peaking) (API 653. 10.5.4, 10.5.5):	2
5	Bottom course deformation:	2
6	Indication of shell leaks:	2
7	Shell misalignment (API 650. 5.6.1.4):	2
8	Weld reinforcement (API 650. 5.7.2):	2
9	Tank roundness (API 653. 10.5.3):	2
10	Seam weld undercut (API 653. 10.4.2.5):	2
11	Remnant welds (API650 3.8.1.2C) (API 652 4.3) (API 653 9.6.5):	2
12	Shell vertical seam weld spacing (API 650. 5.1.5.2):	2
13	Name plate attachment (API 650. 10.1, API 653. 13.1):	2

Legend:

1 Good Condition
2 Satisfactory Condition
3 Repair or alteration recommended
4 Repair or alteration required

NE None Evident required

NA Not applicable

3.1.3.1 Shell Course Remaining Life Calculations As Per API 653:

The minimum acceptable shell plate thickness for continued service was be determined by below:

 $t_{min} = \frac{2.6 \, (\mathrm{H} - 1) \mathrm{DG}}{\mathrm{SE}}$

- t_{min} is the minimum acceptable thickness, in inches for each course as calculated from the above equation; however, t_{min} shall not be less than 0.1 in. for any tank course.

Material - CS equivalent

H (Height of maximum liquid level, in ft.) - 68.71

D (Diameter of tank, in ft.) - 16.99

G (specific gravity of content) – 1.3

S (Max. allowable stress, lbf/in.²) – 24900 (for 1st and 2nd shell course); 27400 (for rest)

E (Joint Efficiency) - 0.7

The following table consolidates the minimum thickness and remaining life of each shell course of the tank. Please refer to the UTG report (LEADS- 2022-UTG-029)

Plate No.	Original Thickne ss (mm)	Shell course height (mm)	Product height, H (ft)	Actual lowest Thicknes s (mm)	Wall loss (mm)	Years of Service	Long Term Corrosion Rate (mm/year)	Min. required thickness (mm)	Remaini ng Life (Years)	Next recommended UTG inspection
Shell Course #1	12	1524	68.7	11.52	0.48	13	0.037	5.67	158	15 years
Shell Course #2	10	1524	63.7	9.68	0.32	13	0.025	5.25	180	15 years
Shell Course #3	10	1524	58.7	9.67	0.33	13	0.025	4.39	208	15 years
Shell Course #4	8	1524	53.7	7.71	0.29	13	0.022	4.01	166	15 years
Shell Course #5	8	1524	48.7	7.69	0.31	13	0.024	3.63	170	15 years
Shell Course #6	8	1524	43.7	7.66	0.34	13	0.026	3.25	169	15 years
Shell Course #7	6	1800	38.7	5.73	0.27	13	0.021	2.87	138	15 years
Shell Course #8	6	1800	32.8	5.58	0.42	13	0.032	2.54	94	15 years
Shell Course #9	6	1800	26.9	5.70	0.30	13	0.023	2.54	137	15 years
Shell Course #10	6	1800	21.0	5.70	0.30	13	0.023	2.54	137	15 years
Shell Course #11	6	1800	15.1	5.90	0.10	13	0.008	2.54	437	15 years
Shell Course #12	6	1800	9.2	5.80	0.20	13	0.015	2.54	212	15 years
Shell Course #13	6	1000	3.3	5.85	0.15	13	0.012	2.54	287	15 years

3.1.4 Shell Appurtenances - Checklist

1	Leakage around reinforcement plate welds:	NE
2	Reinforcement telltale holes (API 650 5.7.5):	2
3	Reinforcement plate spacing (API 650 5.7.3):	2
4	Nozzle weld corrosion/undercut (API 650 8.5.1):	2
5	Indications of leakage around manifolds, flanges, or valves C.1.3.2:	2
6	Indications of leakage around manways and nozzles:	2
7	Indications of leakage around flange bolts and welds:	2

Legend:

3.1.5 Access Structure - Checklist: Not Applicable

3.1.6 Fixed Roof (Cone / Dome) - Checklist

1	Roof plate distortions:	2
2	Roof plates (corrosion, pitting, holes API 653 4.2.1.2):	2
3	Roof plates (coating or paint failure):	2
4	Remnant welds (API 652 7.3) (API 653 9.6.5):	2
5	Indications of product staining:	1
6	Rain water standing, sag of roof C.1.4.3:	2
7	Roof Nozzles & vents condition:	3

Legend:

1	Good Condition	3	Repair or alteration	U/A	Un-assessable
			recommended		
2	Satisfactory Condition	4	Repair or alteration	NE	None Evident
			required		
XX	Not to Code			N/A	Not applicable

3.1.6.1 ROOF PLATE REMAINING LIFE CALCULATION:

Plate No.	Original Thickness (mm)	Lowest actual thickness* (mm)	Wall loss (mm)	Years of Service	Long Term Corrosion Rate (mm/year)	Min. required thicknes s (mm)	Remai ning Life (Years)	Next recommended UTG inspection
Roof Plate	4.50	4.39	0.11	13	0.008	2.29	263	15 Years

^{*}Please refer to the UTG report (LEADS-2022-UTG-029).

3.2 Tank Offline Inspection

- 3.2.1 External floating roof Checklist: Not Applicable
- 3.2.2 Fixed Roof (Internal) Checklist: Not Accessible
- 3.2.3 Internal Floating Roof Checklist: Not Applicable

3.2.4 Shell (Internal) - Checklist

1.	Shell internal coating condition:	N/A
2.	Damages / dents / scratches on the shell plates present:	2
3.	Shell corrosion (API 653 4.3.1.3):	2
4.	Seam weld undercut (API 653 10.4.2.5):	2
5.	Remnant welds (API 650 3.8.1.2C) (API 620 4.3) (API 653 9.6):	2

Legend:

1	Good Condition	3	Repair or alteration	U/A	Un-assessable
			recommended		
2	Satisfactory Condition	4	Repair or alteration	NE	None Evident
			required		
XX	Not to Code			N/A	Not applicable

Shell (Internal) - Comments:

• Internal inspection was not conducted.

3.2.5 Tank bottom and internal appurtenances - Checklist

1	Tank bottom plate condition (corrosion, pitting):					
2	Remnant welds (API 620 4.3, 4.4) (API 653 9.6):	2				
3	Bulges/depressions (API 653 B3.3):	2				
4	Tank bottom coating condition:	N/A				
5	Shell-to-bottom fillet weld (API 650 5.1.5.7):	2				
6	Internal piping general (Coating, corrosion):	2				
7	Heating Coil condition:	N/A				

Legend:

Tank bottom (Internal) – Comments:

Internal inspection was not conducted.

3.2.6 Tank bottom internal (Service Interval)

Plate No.	Original Thickness (mm)	Actual lowest Thickness (mm)	Wall loss (mm)	Years of Service	Long Term Corrosion Rate (mm/year)	Min. required thickness (mm)	Remaining Life (Years)	Next recommended UTG inspection
Bottom Cone	10	NA	NA	13	NA	2.83	NA	Note

Note: Inspection should be scheduled at the earliest possible schedule to perform full bottom cone thickness for remaining line evaluation.

- 4.0 NDT Inspection Reports
 - 4.1 Visual Inspection Photographs
 - 4.2 UTG Inspection Report
 - 4.3 PMP REPORT

4.1 Visual Inspection Photographs

Photo 1: Tank identification

Photo 2: Tank external view in satisfactory condition.

Photo 3: Tank external view in satisfactory condition.

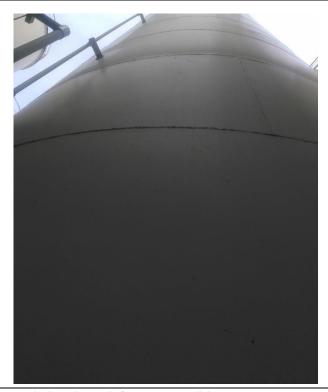


Photo 4: Tank external view in satisfactory condition.

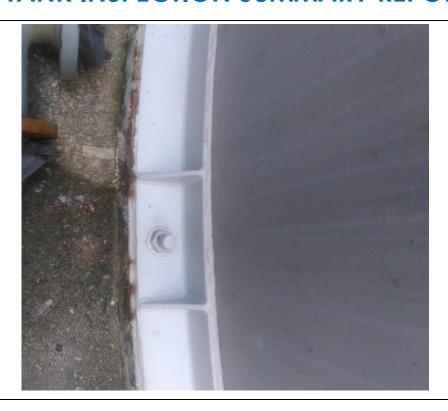


Photo 5:

Photo 6: Bottom angle ring, bolts & grouting were in satisfactory condition.

Photo 7: Bottom angle ring, bolts & grouting were in satisfactory condition.

Photo 8: Bottom angle ring, bolts & grouting were in satisfactory condition.

Photo 9: Bottom angle ring, bolts were in satisfactory condition. Damaged grouting was noted.

Photo 10: Bottom angle ring, bolts were in satisfactory condition. Damaged grouting was noted.

Photo 11: Bottom angle ring, bolts were in satisfactory condition. Damaged grouting was noted.

Photo 12: Maintenance hole was observed in satisfactory condition

Photo 13: Manhole, reinforcement plate were observed in satisfactory condition.

Photo 14: Manhole, reinforcement plate were observed in satisfactory condition.

Photo 15: Manhole, reinforcement plate were observed in satisfactory condition.

Photo 16: Maintenance hole was observed in satisfactory condition.

Photo 17: Bottom cone was observed satisfactory condition.

Photo 18: Annular plate was observed with minor rusting.

Photo 19: Annular plate was observed with minor rusting.

Photo 20: Earth cable was observed satisfactory condition.

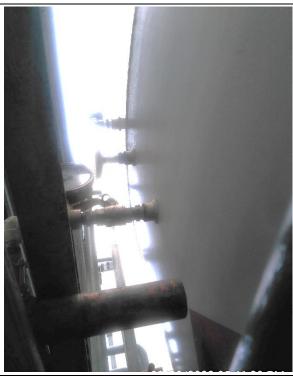


Photo 21: Shell course and nozzles were observed satisfactory condition.

Photo 22: Shell courses was observed satisfactory condition.

Photo 23: Shell courses was observed satisfactory condition

Photo 24: Remaining shell courses & nozzle was observed satisfactory condition

Photo 25: Shell courses was observed satisfactory condition

Photo 26: Roof identification was observed satisfactory condition.

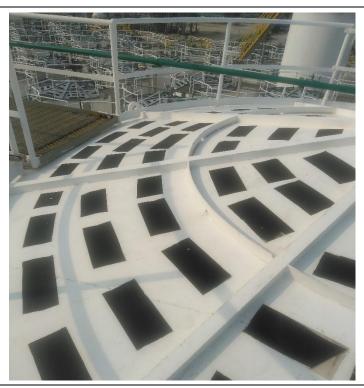


Photo 27: Roof plate was observed in satisfactory condition.

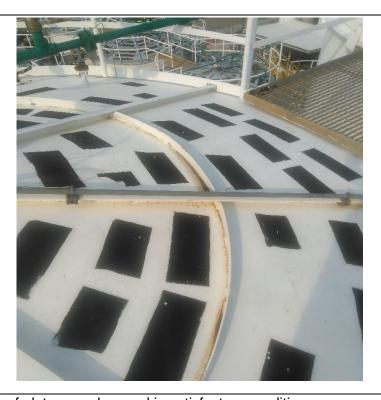


Photo 28: Roof plate was observed in satisfactory condition.

Photo 29: Roof handrail and joints were in satisfactory condition



Photo 30: Roof handrail and joints were in satisfactory condition

Photo 31&32: Roof nozzles and joints were in satisfactory condition.

Photo 33&34: Roof N4 nozzle was observed with corrosion. Recommend to surface prepare and repaint.

Photo 35: Top angle ring and lifting lug were in satisfactory condition

Photo 36&37: Top angle ring and lifting lug were in satisfactory condition



Photo 38& 39: Tank internal view from manhole were in satisfactory condition.

Photo 40&41: Tank internal view was in satisfactory condition

4.2 Ultrasonic Thickness Measurement Report

ULTRASONIC THICKNESS GAUGING

Client : Chemical Specialities (Singapore) Pte Ltd Report No : LEADS/CSL/2022/UTG-029

Project : API Tank Inspection Inspection Date : 30-07-2022

Item Description : Tank T-1253 Shell Course Location : 31 Ayer Merbau Rd, Singapore 627717

Eq.Make / Model : 38 DL PLUS Test Mode : Auto Echo to Echo Procedure : LEADS-IMSP-035 REV-02

Eq. Serial No : 193390803 Screen Range : 0-50mm Standard : API 650 12th Edition

Probe Frequency : 5 MHZ Material : Carbon Steel Drawing No. : NA

Probe Serial No : 1123940 Surface Cond. : Smooth Couplant Type : Wallpaper paste

Probe Size Ø : 11mm Probe Type : Thru-Coat Dual / D7906 Cal Block(Sr.No) : Step Wedge(3E/2-20mm/cs/24)

S/NO	Item Description	Nominal	U	ΓG Meas	urement (r	nm)	Min	Max	Dimir	ution	AVG	Remarks
5/NO	item Description	Thk(mm)	0°	90°	180°	270°	(mm)	(mm)	(mm)	%	AVG	Remarks
1	Shell Course-1	12 mm	11.56	11.53	11.55	11.55	11.53	11.56	-	-	11.55	
'	Sileli Course-1	12 111111	11.58	11.52	11.54	11.52	11.52	11.58	-	-	11.54	
2	Shell Course-2	10 mm	9.73	9.70	9.72	9.69	9.69	9.73	-	-	9.71	
2	Sileli Course-2	10 111111	9.73	9.69	9.68	9.68	9.68	9.73	-	•	9.70	
3	Shell Course-3	10 mm	9.70	9.73	9.68	9.72	9.68	9.73	-	-	9.71	
3		10 mm	9.71	9.72	9.67	9.72	9.67	9.72	-	-	9.71	
4	Shell Course-4	_	7.83	7.90	7.75	7.86	7.75	7.90	-	-	7.84	
4	Sileli Course-4	8 mm	7.71	7.84	7.73	7.80	7.71	7.84	-	•	7.77	
5	Shell Course-5	8 mm	7.69	7.70	7.73	7.70	7.69	7.73	-	-	7.71	
3	Sileli Course-3	Ollilli	7.70	7.70	7.74	7.76	7.70	7.76	-	•	7.73	
6	Shell Course-6	8 mm	7.68	7.70	7.72	7.74	7.68	7.74	-	-	7.71	
· ·	Sileli Coulse-6	OIIIII	7.66	7.78	7.70	7.71	7.66	7.78	-	-	7.71	
7	Shell Course-7	6 mm	5.77	5.73	5.78	5.77	5.73	5.78	-	•	5.76	
,	Sileli Coulse-7	Ollilli	5.73	5.73	5.75	5.76	5.73	5.76	-	-	5.74	

Leads Address : Leads Specialist Services Pte Ltd. Platinum@Pioneer, 32F Tuas Ave 11, Singapore 636855

Inspected By (Signature)	Approved By (Signature)	NDT Levell III	CLIENT REP. (Signature)
S. HALLST COLOR	Solution of the second of the	ROT LEA SO P RAJESH W ASN'T CERT NO. # 200187 *	
S. Nivash Kumar 01-08-2022	Chinnadurai 01-08-2022	P.Rajesh 01-08-2022	

1. The report shall not be reproduced except in full, unless the management representative of the accredited organisation has given Approval in writing.

2.The results reported herein have been performed in accordance with the terms of accreditation under the Singapore Accreditation Council
3.Leads stand no responsibilities for changes in the quality of the same product tested in later stage with same variables but different conditions.

.EADS-IMSF-093 Rev 00 Report No : LEADS/CSL/2022/UTG-029 Page 1 of 4

ULTRASONIC THICKNESS GAUGING

Client : Chemical Specialities (Singapore) Pte Ltd Report No : LEADS/CSL/2022/UTG-029

Project : API Tank Inspection Inspection Date : 30-07-2022

Item Description : Tank T-1253 Location : 31 Ayer Merbau Rd, Singapore 627717

Eq.Make / Model : 38 DL PLUS Test Mode : Auto Echo to Echo Procedure : LEADS-IMSP-035 REV-02

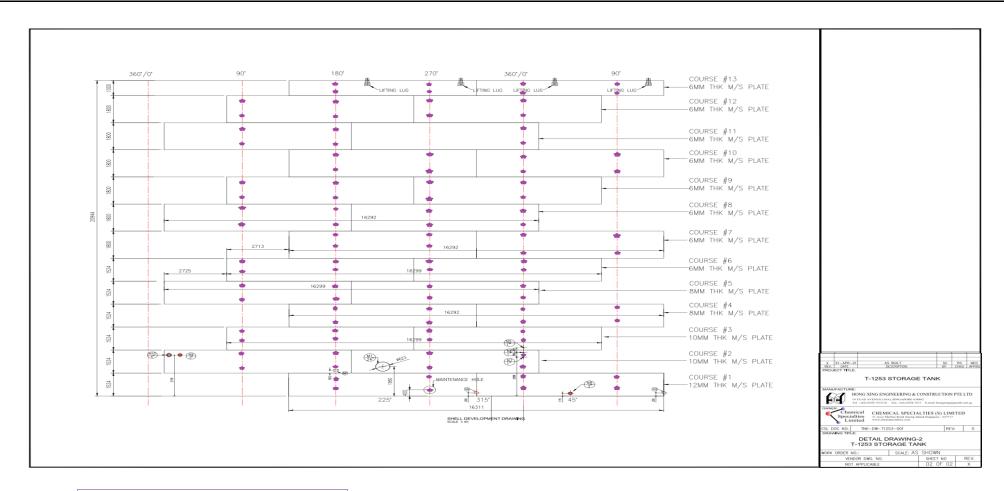
Eq. Serial No : 193390803 Screen Range : 0-50mm Standard : API 650 12th Edition

Probe Frequency : 5 MHZ Material : Carbon Steel Drawing No. : NA

Probe Serial No : 1123940 Surface Cond. : Smooth Couplant Type : Wallpaper paste

Probe Size Ø : 11mm Probe Type : Thru-Coat Dual / D7906 Cal Block(Sr.No) : Step Wedge(3E/2-20mm/cs/24)

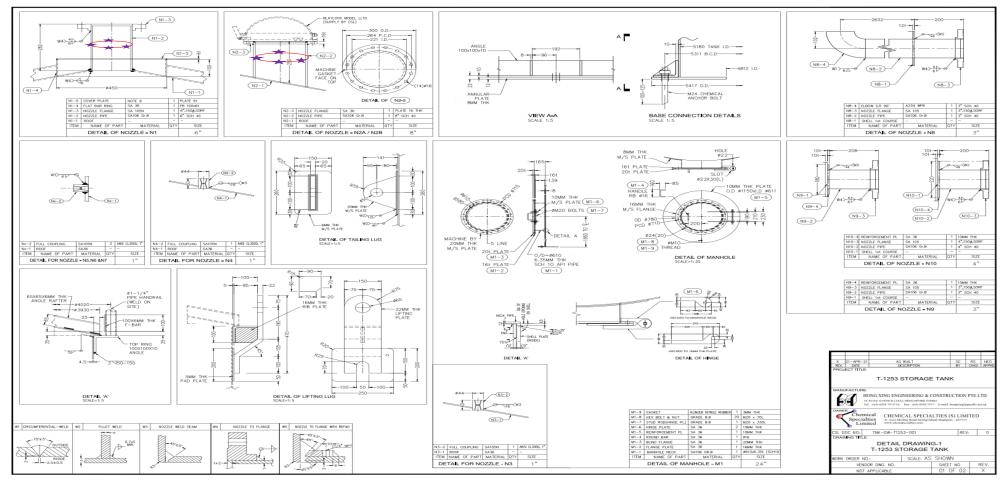
robe Size Ø	3 : 11mm			Probe T	ype	: Thru-Co	at Dual / I	D7906	Cal	Block(Sr	.No)	: Step Wedg	ge(3E/2-20mr	n/cs/24)
S/NO	Item Description	Nominal	UT	TG Meas	urement (r	nm)	Min	Max	Dimir	ution	۸۱	/G	Rem	orko
5/NO	item Description	Thk(mm)	0°	90°	180°	270°	(mm)	(mm)	(mm)	%	A	/G	Kem	arks
8	Shell Course-8	6 mm	5.60	5.63	5.68	5.70	5.60	5.70	-	-		5.65		
0	Sileii Course-o	Ollilli	5.58	5.64	5.68	5.72	5.58	5.72	-	1		5.66		
9	Shell Course-9	6 mm	5.77	5.73	5.75	5.72	5.72	5.77	-	ı	ţ	5.74		
J	Official Godface of	O IIIIII	5.76	5.75	5.75	5.70	5.70	5.76	-	-	;	5.74		
10	Shell Course-10	6 mm	5.70	5.73	5.80	5.79	5.70	5.80	-	-		5.76		
	One could to	0 111111	5.74	5.72	5.78	5.78	5.72	5.78	-	-	;	5.76		
11	Shell Course-11	6 mm	5.92	5.97	5.95	5.93	5.92	5.97	-	-	;	5.94		
	0.16.11 004.100 1.1	0	5.90	5.96	5.94	5.92	5.90	5.96	-	-		5.93		
12	Shell Course-12	6 mm	5.82	5.85	5.83	5.85	5.82	5.85	-	•		5.84		
			5.80	5.88	5.84	5.84	5.80	5.88	-	-		5.84		
13	Shell Course-13	6 mm	5.98	5.86	5.94	5.92	5.86	5.98	-	-	ŧ	5.93		
	0.10.11 000.100 10	0	5.97	5.85	5.93	5.92	5.85	5.97	-	-		5.92		
		1	1			Bottom I	Nozzle				T			
14	Manhole	24"	6.44	6.35	6.39	6.43	6.35	6.44	-	-	(6.40		
15	Nozzle N8	3"	5.73	5.71	5.20	5.24	5.20	5.73	-	-	!	5.47		
•		•		Į.		Roof N	ozzle							
16	Nozzle N1	6"	6.46	6.44	6.37	6.48	6.37	6.48	-	-	(6.44		
17	Nozzle 2A	8"	8.40	8.10	7.80	7.76	7.76	8.40	-	-	8	3.02		
18	Nozzle 2B	8"	7.64	8.33	8.05	7.90	7.64	8.33	-	-	-	7.98		
14	n Denovintic -	Nominal			UT	G Measur	ement (m	m)			Min	Max	A)/O	De
iter	n Description	Thk(mm)	0°	45°	90°	135°	180°	225°	270°	315°	(mm)	(mm)	AVG	Remai
19	Top Cone	4.5	4.41	4.48	4.49	4.47	4.43	4.42	4.39	4.45	4.39	4.49	4.44	
ADS-IMSF-	-093 Rev 00	1	Repor	rt No : LE	ADS/CSL/20)22/UTG-02	29		1		1	Page	e 2 of	4


ULTRASONIC THICKNESS GAUGING

Client : Chemical Specialities (Singapore) Pte Ltd Report No : LEADS/CSL/2022/UTG-029

Project : API Tank Inspection Inspection : 30-07-2022

Item Description : T-1253 Location : 31 Ayer Merbau Rd, Singapore 627717



Client : Chemical Specialities (Singapore) Pte Ltd Report No : LEADS/CSL/2022/UTG-029

Project : API Tank Inspection Inspection : 30-07-2022

Item Description : T-1253 Location : 31 Ayer Merbau Rd, Singapore 627717

TANK INSPECTION SUMMARY REPORT

4.3 PMP Report

Report No: LEADS-22-0109 (T-1253) IMSF-052 Rev-00

	POSITIVE MATERIAL IDENTIFICATION REPORT												
Owner	•	: Chemica	l Specia	list (S) Pte Ltd	d.		Report No		: LEADS-22-PM	IP-011			
Client		: Hong Xin	g Engin	eering & Cons	struction Pte L	_td	Examination	Date	: 30-07-2022				
Addre	ss	: 31 Ayer I	Merbau	Rd, Singapore	627717		Location		: 31, Ayer Merb	au Road			
Projec	:t	: Tank T-1	253				Exposure Ti	me	: 5 Seconds				
Equip	ment / Serial No	: Oxford In	strumer	ntal PMI Maste	er smart / 57U	10023	Material		: Carbon Steel				
Ассер	tance Criteria	: ASME Se	ection II	Ed 2021			Reference P	rocedure	: LEADS-IMSP-	064 Rev 0			
	5 15				Chemi	cal Compos	sition (%)		Material	5			
S.No	Part Des	scription		С	Si	Mn	Р	S	Grade	Result			
1	Pre - Ca	libration		0.028	0.62	1.41	0.008	0.028	SS316L	Accept			
2	Annua	l Plate		0.24	0.16	0.38	0.005	0.001	A-36	Accept			
3	Botton	n Shell		0.19	0.13	0.36	0.014	0.011	A-36	Accept			
4	She	Shell - 1		0.22	0.13	0.23	0.014	0.018	A-36	Accept			
5	Manua	al Pad		0.19	0.24	0.60	0.026	0.041	A-36	Accept			
6	Manua	al Door		0.29	0.21	0.86	0.026	0.016	A-36	Accept			
7	mar	nual		0.22	0.18	0.85	0.020	0.012	A-36	Accept			
8	Тор	Roof		17.00	0.17	0.29	0.017	0.025	A-36	Accept			
9	Top Roof I	Nozzle - 1		0.20	0.19	0.31	0.017	0.034	A-36	Accept			
10	Top Roof I	Nozzle - 2		0.15	0.17	0.30	0.010	0.020	A-36	Accept			
11	Top Roof I	Nozzle - 3		0.16	0.17	0.31	0.010	0.024	A-36	Accept			
12	Bottom	Nozzle		0.06	0.28	1.55	0.010	0.020	SS304	Accept			
13		Post - Calibration		0.026	0.66	1.47	0.011	0.021	SS316L	Accept			
	Material Specifica SS 316L			0.035	1.00	2.00	0.045	0.030	SS 316L	_			
١	Material Specifica A 36	tion	Max	0.25	0.40	1.35	0.040	0.050	A-36				
I	Material Specifica SS 304	tion		0.08	0.75	2.0	0.045	0.030	SS 304				
	00 004					l	1						

Name & Address of the Employer : Leads Specialist Services Pte ltd, Platinum@Pioneer,32F Tuas Ave 11, Singapore 636855

Inspected By	Approved By	Reviewed By	Client Representative
SEAT SEATON SEAT	Solver TO A PERSONAL PROPERTY AND SOLVER TO SOLVE TO SOLV		
V. SENTHIL	P. RAJESH		
INSPECTOR	TECHNICAL MANAGER		
01-08-2022	01-08-2022		

^{1.} The report shall not be reproduced except in full, unless the management representative of LEADS has given Approval in writing

^{2.} Leads stand no responsibilities for changes in the quality of the same product tested in later stage with same variables but different conditions.

TANK INSPECTION SUMMARY REPORT

- 5.0 Equipment and Personnel Certificates
 - 5.1 Equipment Calibration
 - 5.2 Personnel Certification

Report No: LEADS-22-0109 (T-1253) IMSF-052 Rev-00

TANK INSPECTION SUMMARY REPORT

5.1 Equipment Calibration

Report No: LEADS-22-0109 (T-1253) IMSF-052 Rev-00

DIGITAL ULTRASONIC THICKNESS GAUGE CALIBRATION CERTIFICATE

Calibration Certificate No : LEADS-22-UTG-04

Date of Calibration : 01/01/2022

Client : LEADS

Equipment Details

Model & Make : 38DLPLUS & OLYMPUS

Product : DIGITAL ULTRASONIC THICKNESS GAUGE

Serial No : 193390803

Ambient Temperature : (24 ± 2) ° C

Relative Humidity : (35 to 70) % RH

Calibration Accessories

Block Serial No : 7 Step Wedge

Certificate No. : CM-47624/3

This is to certify that the above instruments having serial no. 193390803 has been calibrated Under the ambient Conditions Stated according calibration Procedure ISO 16831:2012 the UTG was calibrated by comparison with a reference Calibration block the reference Standards are traceable to National Standards.

Calibration Date: 01/01/2022 Calibration Due Date: 31/12/2022

Calibrated by Approved By

Name : M. Bharath Name : B. Chinnadurai

Signature : Signature :

Date : 01-01-2022 Date : 01-01-2022

S/No.	Reference Readings	Test Readings	Deviation	Remarks
1	20 mm	19.93	-0.07	OK
2	17 mm	17.01	+0.01	OK
3	14 mm	14.01	+0.01	OK
4	11 mm	11.04	+0.04	OK
5	8 mm	8.08	+0.08	OK
6	5 mm	5.03	+0.03	OK
7	2 mm	2.01	+0.01	OK

The expanded Uncertainty of measurement found to be 0. 06 mm at Confidence level is approximately 95% with coverage factor K=2

POSITIVE MATERIAL IDENTIFICATION CALIBRATION CERTIFICATE

Calibration Certificate No : LEADS-20-CAL-PMI-002

Date of Calibration : 23/12/2020

Client : Leads (in house)

Equipment Details

Make : Oxford Instruments

Model : PMI Master Smart

Product : Optical Emission System

Serial No : 57U0023

This is to certify that the above instrument having serial <u>No. 57U0023</u> has been calibrated. The test proved that the instrument's performance confirms in all respects of the manufacturer's specification.

Calibration Date: 23/12/2020 Calibration Due Date: 22/12/2021

Calibrated & Approved By

Signature

Name : P. Sudhan

Qualification : PCN Level II

Date : 23-12-2020

TANK INSPECTION SUMMARY REPORT

5.2 Personnel Certification

Report No: LEADS-22-0109 (T-1253) IMSF-052 Rev-00

API INDIVIDUAL CERTIFICATION PROGRAMS &

verifies that

Peramaiyan Rajesh

HAS MET THE ESTABLISHED AND PUBLISHED REQUIREMENTS FOR API CERTIFICATION AS AN

API 653 ABOVEGROUND STORAGE TANK INSPECTOR

IN ACCORDANCE WITH THE KNOWLEDGE DEFINED IN THE API Standard 653

CERTIFICATION NUMBER 74601

ORIGINAL CERTIFICATION DATE
CURRENT CERTIFICATION DATE
EXPIRATION DATE
August 31, 2020
August 31, 2023

Manager, Individual Certification Programs

NDT CERTIFICATION

Certificate Reference No: LEADS-IMSC-NDTC-052 Date of Issue: 14/09/2020 Date of Expiry: 13/09/2025

This is to certify and authorize **Subramaniyan Nivashkumar (G2983453P)** represent Leads Specialist Services Pte. Ltd, to work in the following NDT methods, as he satisfactorily met the qualification and certification requirements of company written Practice LEADS-IMSP-029 Rev 02, which is based on ASNT RP No SNT-TC-1A 2016 Ed.

Method	NDT Level	Scope /Sectors/ Categories
Ultrasonic Test	Level II	Flaw Detection
Ultrasonic Thickness Gauging	Level II	A Scan Thickness & Spot Measurement
Magnetic Particle Inspection	Level II	Electromagnetic Yoke, Visible /Fluorescent, Dry/Wet Particle
Liquid Penetrant Inspection	Level II	Visible / Fluorescent
Radiography Test	Level II	Radiography

This record is only evidence of competence when supported by the following evidence a specified by the minimum requirements of leads specialist services pte ltd competence management system.

- Valid eye test
- Prior experience
- examination
- No interrupted services of the respective NDT Methods with the previous 6 months

This inspector has meet lead's requirements for the respective methods this record only valid during employment with leads specialist services pte ltd.

This document is un controlled if printed authorization history can be provided on demand

Authorized by	Position	Date	Signature
P. SUDHAN	Operation Manager	14/09/2020	John Services Pla
A.U. VASANTH	ASNT NDT Level III	14/09/2020	A. V. John Challs, day

LEADS SPEIALIST SERVICES PTE LTD NO.2 TUAS SOUTH AVE 2 SINGAPORE 637601

ops@leads1.com/www.leads1.com

NDT CERTIFICATION

Certificate Reference No: LEADS-IMSC-NDTC-060 Date of Issue: 28/12/2020 Date of Expiry: 27/12/2025

This is to certify and authorize **Vaithilingam Senthil (G8568233X)** represent Leads Specialist Services Pte. Ltd, to work in the following NDT methods, as he satisfactorily met the qualification and certification requirements of company written Practice LEADS-IMSP-029 Rev 02, which is based on ASNT RP No SNT-TC-1A 2016 Ed.

Method	NDT Level	Scope /Sectors/ Categories
Magnetic Particle Inspection	Level II	Electromagnetic Yoke, Visible /Fluorescent, Dry/Wet Particle
Ultrasonic Test	Level II	Flaw Detection
Ultrasonic Thickness Gauging	Level II	A Scan Thickness & Spot Measurement
Liquid Penetrant Inspection	Level II	Visible / Fluorescent
Radiography Test	Level II	Radiography

This record is only evidence of competence when supported by the following evidence a specified by the minimum requirements of leads specialist services pte ltd competence management system.

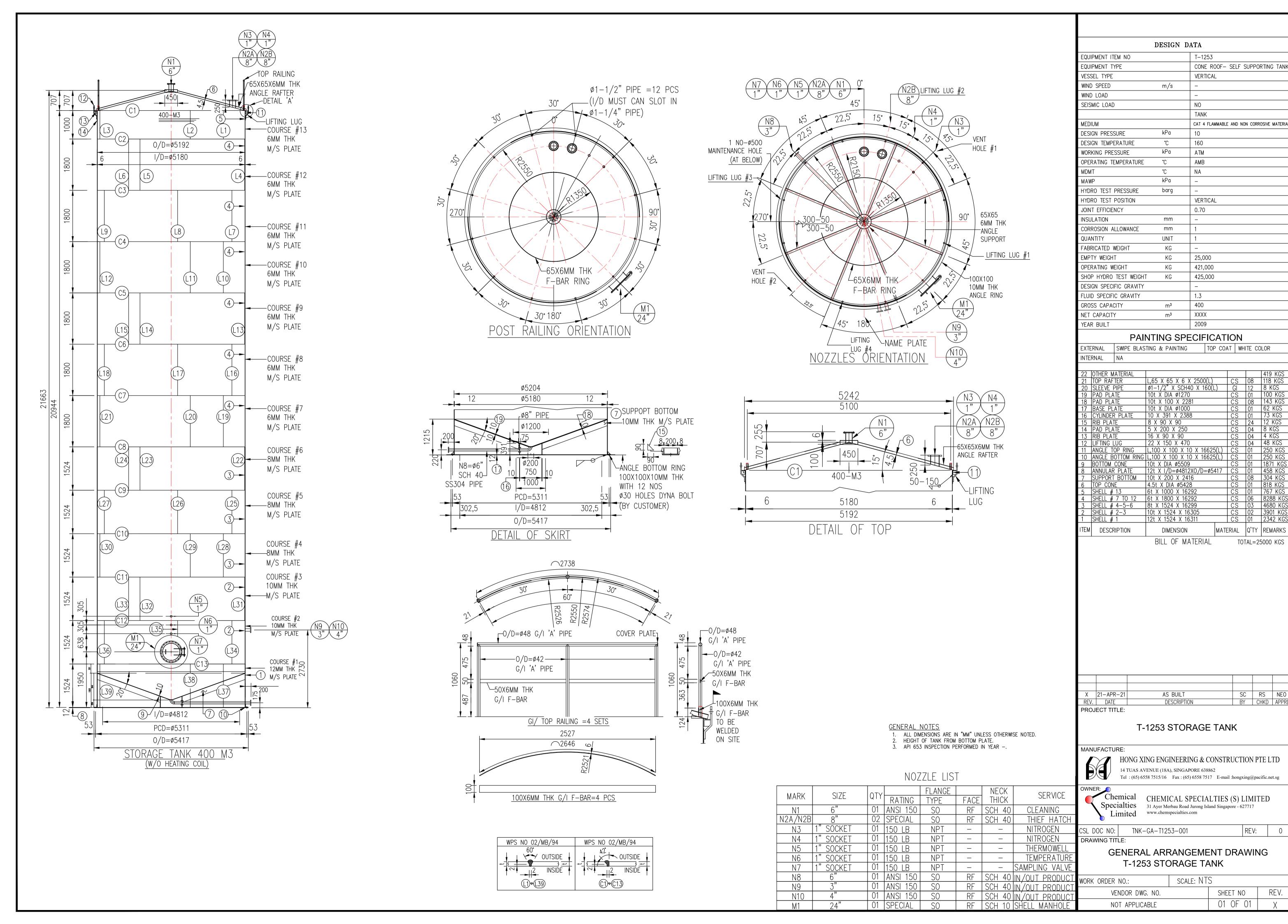
- Valid eye test
- Prior experience
- examination
- No interrupted services of the respective NDT Methods with the previous 6 months

This inspector has meet lead's requirements for the respective methods this record only valid during employment with leads specialist services pte ltd.

This document is un controlled if printed authorization history can be provided on demand

Authorized by	Position	Date	Signature
P. SUDHAN	Operation Manager	28/12/2020	Jugar Services Pie
A.U. VASANTH	ASNT NDT Level III	28/12/2020	granialist day

LEADS SPEIALIST SERVICES PTE LTD NO.2 TUAS SOUTH AVE 2 SINGAPORE 637601


ops@leads1.com/www.leads1.com

TANK INSPECTION SUMMARY REPORT

6.0 General Arrangement Drawing

Report No: LEADS-22-0109 (T-1253) IMSF-052 Rev-00

REPORT

TANK INSPECTION SUMMARY REPORT

Mechannical calculation

Tank T-1253

Client : Chemical Specialties (S) Pte Ltd

Location : 31 Ayer Merbau Road, Jurong Island

Project : Tank Inspection

MECHANICAL CALCULATION FOR TANK T-1253

PROJECT	TANK INSPECTION - T-1253
MANUFACTURER	CHEMICAL SPECIALTIES (SINGAPORE) PTE. LTD.
END USER	CHEMICAL SPECIALTIES (SINGAPORE) PTE. LTD.
VENDOR DOCUMENT NO.	TNK-CS-T1253-001
CLIENT DOCUMENT NUMBER	TNK-CS-T1253-001

20/08/2022	0	Issued for Approval	LOK	PK	SD
Date	Rev	Description	Prepared	Checked	Approved

 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

 ITEM NAME
 T-1253 STORAGE TANK®
 REV. No.
 A

Table of Contents

	Description	Page No.
1.	Design Data	2
2.	Shell Design	3
3.	Material physical Properties	5
4 .	Bottom Design	6
5 .	Rafter Supported Cone Roof	22
6 .	Design of Shell for Intermediate Wind Girder	43
7.	Seismic Analaysis	44
8.	Wind Loads(Overturning Stability)	49
9.	Anchor Bolts	51
10 .	Anchor Chair	53
11.	Weight summary	57

CLIENT:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDTag No.T-1253END USER:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDDoc. NO.TNK-CSL-T1253-001PROJECT:Tank Inspection and Mechanical CalculationClient / End User doc. No.-ITEM NAMET-1253 STORAGE TANKIREV. No.A

1.0			Design	Data					
	Inside Diameter of tank		D _i	=	5180.0 mm	=	17.0 ft		
	Height of shell		Hs	=	20944.0 mm	=	68.7 ft		
	Number of tanks			=	1				
	Product			=	NA				
	Design Code			=	API 650, 12th E	d,Add 2	2Jan. 2016		
	Shell Design			=	1-Foot Method				
	Appendixes			=	E , F , M ,P				
	Data Sheet / Other main appli	cable specifications of client		=					
	Type of tank			=	Rafter Suppo	rted C	one Roof		
		(HLL)	H _{HLL}	=	20900.00 mm	=	68.6 ft		
	High liquid levels	(HHLL)	H _{HHLL}	=	20900.00 mm		68.6 ft		
	Design Liquid level	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Н	=	20944.00 mm		68.7 ft		
	Design Elquiu level	(LLL)	H _{LLL}	=	1900.00 mm	_	6.2 ft		
	Minimu liquid levels	(LLLL)	H _{LLLL}	=	400.00 mm	=	1.3 ft		
	Maximum Capacity	(Volume uptill Design liquid level)	V _{max}	=	441.38 cu.m	=	15587 cu.ft		
	Net working capacity	(Volume between HLL & LLL)	V _{wor}	=	400 cu.m	=	14140 cu.ft		
	Gross/Nominal Capacity	(Volume Uptill shell height)	V _{gross}	=	441.38 cu.m	=	15587 cu.ft		
	Gross/Norminal Oupderty	(volume opini shen neight)	• gross		441.50 cu.iii		10007 cd.it		
	Design specific gravity		G	=	1.3				
	C.A for Bottom			=	1.0 mm	=	0.04 in		
	C.A for Shell			=	1.0 mm	=	0.04 in		
	C.A for Roof			=	1.0 mm	=	0.04 in		
	C.A for curb angle			=	1.0 mm	=	0.04 in		
	C.A for Anchor Bolt			=	1.0 mm	=	0.04 in		
	C.A for Anchor Attachments			=	1		0.04 in		
	Design pressure		P_i	=	5	=	1.45 psi.g		
	External pressure		P_{e}	=	0.00 kPa.g	=	0.00 psi.g		
	Pressure combination factor			=	0.400				
	Live load on roof		L	=	1.0 kPa.g	=	21 psf	Ref:	Data sheet
	Operating temperature		t_{o}	=	30.0°C				
	Design temperature		t_d	=	160.00°C				
	Minimum design metal temper	rature (MDMT)	t _{MDMT}	=	10.00°C				
	Maximum filling rate			=	40.00 cu.m/hr				
	Maximum empting rate			=	40.00 cu.m/hr				
	Seismic and Wind design pa	arameters as per client's specification	As per d	ata sheet					
	Seismic Use Group)	SUG	=	III				
	Site Class			=	D				
	0.2 s (short period)	spetral response acceleration	S_s	=	4.6	%g			
	1.0 s (short period) spetral response acceleration			=	2	%g			
	-	Ground Acceleration Parameter	S_0	=	2	%g			
	Wind Speed		V	=	79 Km/hr	=	49.15 mph		
	Exposure category			=	С				
	Importance Factor		I	=	1.15				

CLIENT:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDTag No.T-1253END USER:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDDoc. NO.TNK-CSL-T1253-001PROJECT:Tank Inspection and Mechanical CalculationClient / End User doc. No.-ITEM NAMET-1253 STORAGE TANKIIREV. No.A

2) <u>Shell Design</u>

Insulation Presen (Yes/No)

2.1)	INPUTS				<u>References</u>
	Design code	API 650, 12th E	Ed,A	dd 2Jan. 2016	
	Thickness calculation method		1	-Foot Method	
	Material Type			CS	
	Inside dia. Of tank for first shell course	D_i	=	5.180 m	
	Nominal dia. of tank for firsr shell course	D	=	5.192 m	(API 650 5.6.1.1, note 1)
	Height of shell	H_s	=	20.944 m	
	Design internal pressure	P_i	=	10.00 kPa.g	
	Head due to internal pressure	H _{Pi}	=	Pi / (9.81*G) =	0.785 m <i>Ref: F.2.1</i>
	Design liquid level (pressure head included)	Н	=	21.729 m	
	Height of water during hydrotest		=	20.944 m	
	Test pressure		=	12.50 kPa.g	Ref: API 650 F.4.4
	Head due to test pressure		=	Pi / (9.81) =	1.276 m
	Design liquid level during hydrotest	H_t	=	22.220 m	
	Density of material	ρ	=	7850 kg/m^3	
	Design Specific gravity	G	=	1.30	(Ref: API 650 5.6.3.2)
	Corrosion allowance	C.A	=	1.0 mm	
	Joint efficiency	Ε	=	0.7	

NO

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME T-1253 STORAGE TANKII REV. No. A

3.2) <u>CALCULATION</u> (*Ref: API 650 5.6.3*)

Design Shell Thickness $t_d = \frac{4.9 \times D \times (H - 0.3) \times G}{Sd} + C.A$

Hydrostatic Test shell thickness $t_{l} = \frac{4.9 \times D \times (H - 0.3)}{St}$

Minimum required nominal shell thickness = 6 mm (Ref: API 650 5.6.1.1)

Course #	Material	Plate Width	Liquid Level, Design(H _d)	Liquid level, Test(H _t)	Design Thickness, t _d	Hydrostatic test thickness, t _t	Seismic thickness, t _{sismic}	Max (t _d ,t _t ,t _{sismic})	t _{used}	Shell wt. (uncoroded	i)	Shel (cord	
		m	m	m	mm	mm	mm	mm	mm	Kg	KN	Kg	KN
		5.6.1.2			5.6.3.2	5.6.3.2	E.6.2.4			pi x D x H x t _{used} x	r	pi x D x H	x t _{used} x r
1	SA-36	1.524	21.73	22.22	5.87	3.26	3.69	5.87	12	2,342	23	2,147	21
2	SA-36	1.524	20.20	20.70	5.52	3.03	3.42	5.52	10	1,951	19	1,756	17
3	SA-36	1.524	18.68	19.17	5.17	2.81	3.16	5.17	10	1,951	19	1,756	17
4	SA-36	1.524	17.16	17.65	4.83	2.58	2.90	4.83	8	1,560	15	1,365	13
5	SA-36	1.524	15.63	16.12	4.48	2.35	2.64	4.48	8	1,560	15	1,365	13
6	SA-36	1.524	14.11	14.60	4.14	2.13	2.38	4.14	8	1,560	15	1,365	13
7	SA-36	1.800	12.58	13.08	3.79	1.90	2.06	3.79	6	1,381	14	1,151	11
8	SA-36	1.800	10.78	11.28	3.38	1.63	1.75	3.38	6	1,381	14	1,151	11
9 10	SA-36 SA-36	1.800	8.98 7.18	9.48 7.68	2.97 2.56	1.37 1.10	1.44 1.14	2.97 2.56	6	1,381 1,381	14 14	1,151 1,151	11
11	SA-36	1.800	7.18	7.68	2.56	1.10	1.14	2.56	6	1,381	14	1,151	11
12	SA-36	1.800	5.38	5.88	2.15	0.83	1.13	2.15	6	1,381	14	1,151	11
13	SA-36	1.000	5.38	5.88	2.15	0.83	1.13	2.15	6	767	8	639	6
Total	shell plates height	20.9440			1					19,977	196.0	17,298	169.7
	Approx. Weight of	of Nozzles	and their Atta	achments:						1,000	9.8	1000	9.8
	Approx. Weight of Staircase									400	3.9	400	3.9
	Miscellaneous weight									500	4.9	500	4.9
	Weight of Anchor chairs									114	1.1	114	1.1
	Sum of all shell atachements (excluding stiffners and curb angle)								W_{SA}	2,014	19.8	2,014	19.8
	Total weight of shell plus attachments								W _{ST}	21,992	215.7	19,312	189.5

Number of courses = 13

Height of shell excluding top curb angle H = 20.944 m

Nominal thickness of thinnest shell course t = 6 mm

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

TNK-CSL-T1253-001

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO.

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME T-1253 STORAGE TANKII REV. No. A

3.0 <u>Material physical Properties</u>

Material type = CS

Density ρ = 7850 kg/m³ Modulus of elasticity @ design temperature E' = 194200 MPa

Physical properties:

Item #	Material	Yield Stenght	Tensile Stress	Product Design Stress	Hydrostatic Test Stress
		MPa	MPa	MPa	MPa
Shell course # 1	SA-36	218.50	540.00	145.67	171.00
Shell course # 2	SA-36	218.50	540.00	145.67	171.00
Shell course # 3	SA-36	218.50	540.00	145.67	171.00
Shell course # 4	SA-36	218.50	540.00	145.67	171.00
Shell course # 5	SA-36	218.50	540.00	145.67	171.00
Shell course # 6	SA-36	218.50	540.00	145.67	171.00
Shell course # 7	SA-36	218.50	540.00	145.67	171.00
Shell course # 8	SA-36	218.50	540.00	145.67	171.00
Shell course # 9	SA-36	218.50	540.00	145.67	171.00
Shell course # 10	SA-36	218.50	540.00	145.67	171.00
Shell course # 11	SA-36	218.50	540.00	145.67	171.00
Shell course # 12	SA-36	218.50	540.00	145.67	171.00
Shell course # 13	SA-36	218.50	540.00	145.67	171.00
Bottom Plates	SA-36	218.50	540.00	145.67	171.00
Roof plates	SA-36	218.50	540.00	145.67	171.00

Temperature reduction factor for yield strength as per M.3.3 = 0.9 REF: API 650 M.3.3

Annex M Modification for allowable stress as per M.3.2 = 2/3 x Temperature modified stress REF: API 650 M.3.2

Temperature factor for manhole and cleanout door flange & cover and Cleanout door Flange Bottom reinforcing plate

1.0

REF: API 650 M.3.5

Material Properties As Per Section 4 of API 650

Item Name	Material	Material Group as per Table 4-4a	Material Group Selected	Applicable notes as per Table 4-4a	Maximum Thickness for selected material	Provided Thickness	Check	MDMT Provided	MDMT Rated	Check
Shell course # 1	SA-36	I/II	II	2,5	40.0	12	O.K	10.0	-24.20	O.K
Shell course # 2	SA-36	1/11	II	2,5	40.0	10	O.K	10.0	-25.47	O.K
Shell course # 3	SA-36	I/II	II	2,5	40.0	10	O.K	10.0	-25.47	O.K
Shell course # 4	SA-36	1/11	II	2,5	40.0	8	O.K	10.0	-26.74	O.K
Shell course # 5	SA-36	1/11	II	2,5	40.0	8	O.K	10.0	-26.74	O.K
Shell course # 6	SA-36	1/11	II	2,5	40.0	8	O.K	10.0	-26.74	O.K
Shell course # 7	SA-36	I/II	II	2,5	40.0	6	O.K	10.0	-28.01	O.K
Shell course # 8	SA-36	1/11	II	2,5	40.0	6	O.K	10.0	-28.01	O.K
Shell course # 9	SA-36	1/11	II	2,5	40.0	6	O.K	10.0	-28.01	O.K
Shell course # 10	SA-36	1/11	II	2,5	40.0	6	O.K	10.0	-28.01	O.K
Shell course # 11	SA-36	I/II	II	2,5	40.0	6	O.K	10.0	-28.01	O.K
Shell course # 12	SA-36	1/11	II	2,5	40.0	6	O.K	10.0	-25.47	O.K
Shell course # 13	SA-36	1/11	II	2,5	40.0	6	O.K	10.0	-39.72	O.K
Bottom Plates	SA-36	1/11	II	2,5	40.0	10	O.K	10.0	-25.47	O.K
Roof plates	SA-36	1/11	II	2,5	40.0	4.5	O.K	10.0	-34.13	O.K

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.
ITEM NAME T-1253 STORAGE TANK® REV. No. A

4 CONICAL BOTTOM CALCULATION

Maximum liquid level 20,764 mm Minimum liquid level 400 mm Specific gravity of liquid SG 1.3 Product density 1300 kg/m3 12.00 mm Annular plate actual thickness t annular Annular plate actual width w_annular 106.5 mm Material SA36 Joinf efficiency 0.85 Ε Shell radius 2590 mm Rc 102.0 inches $\boldsymbol{\Theta}$ - is the angle of cone elements to the horizontal, deg Angle Θ 20 deg Radians = 0.3490659 TAN O 0.3639702 Height of Conical bottom h 942.7 mm 2756.2 mm Slant Height of the Conical bottom ς Self Supported Conical bottom Area 22426608 mm2 (PIXrXS) 22.43 m2 34761.31 inch2 Volume of the conical bottom 6.62 m3 $(PI * (Rc^2) * h) / 3$ Weight Calculation Bottom Cone liquid weight 8608.6912 kg (Product density * V) Operating liquid height (refer section 8) 446,335 kg Total weight of the liquid on bottom cone W total 454,943 kg 1,002,978 lbs P = Total pressure, acting at a given level of the tank under a particular condition of loading P = 10.00 kPA 1.450 psi one-half the included apex angle of the conical bottom $(\boldsymbol{\alpha})$ 70 deg Radians = 1.2217305

Bottom thickness calculations due to internal pressure at the juncture between bottom and shell Meridional unit force for conical walls T1 API 620 Section 5.10.2.5 (b)

T1 =
$$\left(\frac{Rc}{2\cos\alpha}\right)$$
 X $\left(\frac{P}{A} + \left(\frac{W_total}{A}\right)\right)$

Latitudinal unit force for conical walls T2 API 620 Section 5.10.2.5 (b)

T2 =
$$\frac{P \times Rc}{\cos \alpha}$$
T2 =
$$\frac{432.41}{\cos \alpha}$$
 | lbf/inch

The thickness of the tank wall at any given level shall be not less than the largest value of t as determined for the level by the methods prescribed in 5.10.3.2

CLIENT:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Tag No.	T-1253
END USER:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Doc. NO.	TNK-CSL-T1253-001
PROJECT:	Tank Inspection and Mechanical Calculation	Client / End User doc. No.	-
ITEM NAME	T-1253 STORAGE TANKII	REV. No.	Α

5.10.3.2 If the units forces T1 and T2 are both positive indicating tension, for the governing combination of gas pressure (or partial vacuum) and liqukl head at a given level of the tank, the larger of the two shall be used for computing the thickness required at that level, as shown in the following equations:

Thickness calculatoin based on T1 API 620 Section 5.10.3.2

t1 =
$$\left(\frac{T1}{\text{Sts x E}}\right)$$

Maximum Allowable Stress Values for Simple Tension Sts = 16000 lbf/inch2

API 620, Table 5-1

t1 = **0.3322** Inch

Thickness calculatoin based on T1 API 620 Section 5.10.3.2

$$t2 = \left(\frac{T2}{-\text{Sts x E}} \right)$$

2 = **0.0318** Inch

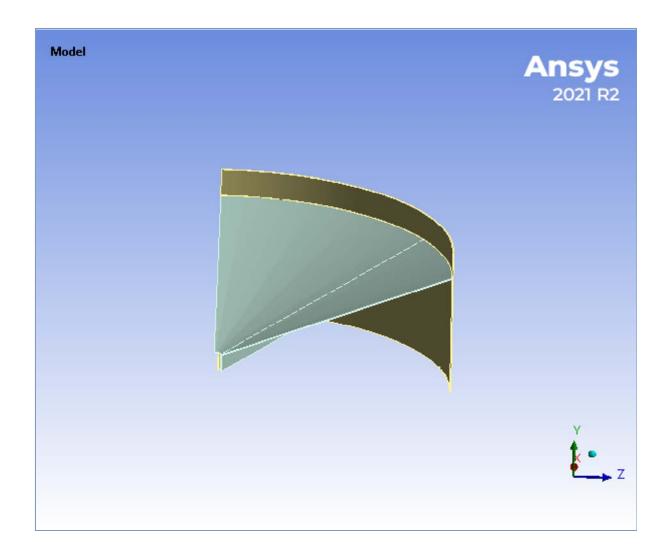
 $t_{required} = 0.3322 \text{ Inch}$ Max (t1, t2)= 8.44 mm $t_{required} = 9.44 \text{ mm}$ $(t_{required} + C.A)$

Selected Thickness = 10.0 mm

Hence thickness of conical bottom as 10.0 mm

Therefore, use thickness satisfactory.

Actual thickness $t_actual = 10.0 \text{ mm}$ Corrosion allowance c.A = 1.00 mm Corroded plate thickness c.A = 1.00 mm Corroded c.A = 1.00 mm


Corroded plate thickness $t_corroded = 9.0 \text{ mm}$ $(t_actual-C.A)$ Bottom cone new plate weight = 1760.49 kg $(density \times A \times t_actual)$ Bottom cone corroded plate weight = 1584.44 kg $(density \times A \times t_corroded)$

Note: Further investigation has been performed by FEA and confirm the thickness.

Project* Page 1 of 14

Project*

Project* Page 2 of 14

Contents

- Units
- Model (A4)
 - o **Geometry**
 - <u>SYS</u>
 - Parts
 - o Materials
 - o Coordinate Systems
 - o **Symmetry**
 - Symmetry Region
 - o Connections
 - Contacts
 - Contact Regions
 - o Mesh
 - o Static Structural (A5)
 - Analysis Settings
 - Loads
 - Solution (A6)
 - Solution Information
 - Equivalent Stress
- Material Data
 - o Structural Steel

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

model (A+) > Geometry						
Object Name	Geometry					
State	Fully Defined					
Definition						
Source	F:\Project\Ram Tank\T-1340_files\dp0\SYS\DM\SYS.scdoc					
Туре	SpaceClaim					
Length Unit	Meters					
Element Control	Program Controlled					
Display Style	Body Color					
Bounding Box						
Length X	2602. mm					

Project* Page 3 of 14

Length Y	1625. mm					
Length Z	2602. mm					
Properties						
Volume	1.4585e+008 mm³					
Mass	1144.9 kg					
Scale Factor Value	1.					
	Statistics					
Bodies	4					
Active Bodies	4					
Nodes	56749					
Elements	27165					
Mesh Metric	None					
	Update Options					
Assign Default Material	No					
	asic Geometry Options					
Solid Bodies	Yes					
Surface Bodies	Yes					
Line Bodies	Yes					
Parameters	Independent					
Parameter Key	·					
Attributes	Yes					
Attribute Key						
Named Selections	Yes					
Named Selection Key						
Material Properties	Yes					
·	anced Geometry Options					
Use Associativity	Yes					
Coordinate Systems	Yes					
Coordinate System Key						
Reader Mode Saves Updated File	No					
Use Instances	Yes					
Smart CAD Update	Yes					
Compare Parts On Update	No					
Analysis Type	3-D					
Mixed Import Resolution	None					
Import Facet Quality	Source					
Clean Bodies On Import	No					
Stitch Surfaces On Import	None					
Decompose Disjoint Geometry	Yes					
Enclosure and Symmetry Processing	Yes					
	. ***					

TABLE 3
Model (A4) > Geometry > Body Groups

woder (A4) > Geometry > Body Groups						
Object Name	SYS					
State	Meshed					
Graphics Properties						
Visible	Yes					
Definition						
Suppressed	No					
Assignment	Structural Steel					
Coordinate System	Default Coordinate System					
Bounding Box						

Project* Page 4 of 14

Length X	2602. mm
Length Y	1625. mm
Length Z	2602. mm
Pro	operties
Volume	1.4585e+008 mm³
Mass	1144.9 kg
Centroid X	-1202.7 mm
Centroid Y	876.08 mm
Centroid Z	1387.3 mm
Moment of Inertia Ip1	5.8684e+008 kg·mm²
Moment of Inertia Ip2	1.4603e+009 kg·mm²
Moment of Inertia Ip3	1.2122e+009 kg·mm²
St	atistics
Nodes	56749
Elements	27165
Mesh Metric	None
CAD	Attributes
PartTolerance:	0.0000001
Color:143.175.143	

TABLE 4
Model (A4) > Geometry > SYS > Parts

Object Name	Solid	Solid	Solid	Solid	
State		Meshed			
	(Graphics Properties			
Visible		Ye	es		
Transparency		•	1		
		Definition			
Suppressed		N	0		
Stiffness Behavior		Flex	rible		
Coordinate System		Default Coord	linate System		
Reference		By Envi	ronment		
Temperature					
Treatment		No	ne		
Material Material					
Assignment		Structural Steel			
Nonlinear Effects			es		
Thermal Strain Effects			es		
	Bounding Box				
Length X	2590. mm	2602. mm	1263. mm	2172.2 mm	
Length Y	965.23 mm	1625. mm	1154.5 mm	1153.8 mm	
Length Z	2590. mm	2602. mm	2170.2 mm	1255.5 mm	
		Properties			
Volume	5.6324e+007 mm ³	7.9517e+007 mm ³	5.0046e+006 mm ³	5.0006e+006 mm ³	
Mass	442.14 kg	624.21 kg	39.286 kg	39.254 kg	
Centroid X	-1490.9 mm	-938.72 mm	-1923.2 mm	-1432.9 mm	
Centroid Y	990.76 mm	812.38 mm	737.03 mm	736.65 mm	
Centroid Z	1098.8 mm	1650.9 mm	1161. mm	671.52 mm	
Moment of Inertia Ip1	1.674e+008 kg·mm²	1.6958e+008 kg·mm²	2.3613e+007 kg·mm²	1.1447e+005 kg·mm²	
Moment of Inertia Ip2	4.3466e+008 kg·mm²	7.9422e+008 kg·mm²	2.3499e+007 kg·mm²	2.3442e+007 kg·mm²	
	2.7053e+008	8.9888e+008	1.1456e+005	2.3556e+007	

Project* Page 5 of 14

Moment of Inertia lp3	kg·mm²	kg·mm²	kg·mm²	kg·mm²
		Statistics		
Nodes	25074	30491	10	32
Elements	12160	14771	11	17
Mesh Metric	None			

TABLE 5 Model (A4) > Materials

(,		
Object Name	Materials	
State	Fully Defined	
Statistics		
Materials 1		
Material Assignments	0	

Coordinate Systems

TABLE 6
Model (A4) > Coordinate Systems > Coordinate System

uei (A4) > Coolullate	Systems > Coordinate Syst	
Object Name	Global Coordinate System	
State	Fully Defined	
De	finition	
Туре	Cartesian	
Coordinate System ID	0.	
	Drigin	
Origin X	0. mm	
Origin Y	0. mm	
Origin Z	0. mm	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0. 1. 0.]	
Z Axis Data	[0. 0. 1.]	

Symmetry

TABLE 7
Model (A4) > Symmetry

Object Name	Symmetry
State	Fully Defined

TABLE 8
Model (A4) > Symmetry > Symmetry Region

Model (A4) > Symmetry > Symmetry Region					
Object Name	Symmetry Region	Symmetry Region Symmetry Region 2 Symmetry Region 3 Symmetry Region 4			
State		Fully	Defined		
Scope					
Scoping Method	Geometry Selection				
Geometry	2 Faces 1 Face 2 Faces 1 Face				
Definition					
Scope Mode	Manual				
Туре		Symmetric			
Coordinate System	Global Coordinate System				
Symmetry Normal	X Axis				
Suppressed	No				

Project* Page 6 of 14

Connections

TABLE 9
Model (A4) > Connections

Object Name	Connections	
State	Fully Defined	
Auto Detection		
Generate Automatic Connection On Refresh	Yes	
Transparency		
Enabled	Yes	

TABLE 10 Model (A4) > Connections > Contacts

Object NameContactsStateFully DefinedDefinitionConnection TypeContactScopeScoping MethodGeometry SelectionGeometry All BodiesAuto DetectionTolerance TypeSliderTolerance Slider0.Tolerance Value10.057 mmUse RangeNoFace/Face Angle Tolerance75.°Face-Face Angle ToleranceOffCylindrical FacesIncludeFace/EdgeNoEdge/EdgeNoPriorityInclude AllGroup ByBodiesSearch AcrossBodiesStatisticsConnections3Active Connections3	Wiodel (A4) / Confident	ons / Comacis	
DefinitionConnection TypeContactScopeScoping MethodGeometry SelectionGeometryAll BodiesAuto DetectionTolerance TypeSliderTolerance Slider0.Tolerance Value10.057 mmUse RangeNoFace/FaceYesFace-Face Angle Tolerance75. °Face Overlap ToleranceOffCylindrical FacesIncludeFace/EdgeNoEdge/EdgeNoPriorityInclude AllGroup ByBodiesSearch AcrossBodiesStatisticsConnections3	Object Name	Contacts	
Connection Type Contact Scope Scoping Method Geometry Selection Geometry All Bodies Auto Detection Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3		Fully Defined	
Scope Scoping Method Geometry Selection Geometry All Bodies Auto Detection Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3		n	
Scoping Method Geometry Selection Geometry All Bodies Auto Detection Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Connection Type	Contact	
Geometry All Bodies Auto Detection Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Scope		
Auto Detection Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Scoping Method	Geometry Selection	
Tolerance Type Slider Tolerance Slider 0. Tolerance Value 10.057 mm Use Range No Face/Face Yes Face-Face Angle Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Geometry	All Bodies	
Tolerance Slider Tolerance Value Tolerance Value Tolerance Value Use Range No Face/Face Yes Face-Face Angle Tolerance Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Search Across Bodies Statistics Connections 3	Auto Detec	tion	
Tolerance Value Use Range No Face/Face Yes Face-Face Angle Tolerance Face Overlap Tolerance Off Cylindrical Faces Face/Edge No Edge/Edge No Priority Include All Group By Search Across Statistics Connections 3	Tolerance Type	Slider	
Use Range No Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Tolerance Slider	0.	
Face/Face Yes Face-Face Angle Tolerance 75. ° Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Tolerance Value	10.057 mm	
Face-Face Angle Tolerance Face Overlap Tolerance Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Search Across Statistics Connections 3	Use Range	No	
Face Overlap Tolerance Off Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Face/Face	Yes	
Cylindrical Faces Include Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Face-Face Angle Tolerance	75. °	
Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Face Overlap Tolerance	Off	
Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Cylindrical Faces	Include	
Priority Include All Group By Bodies Search Across Bodies Statistics Connections 3	Face/Edge	No	
Group By Bodies Search Across Bodies Statistics Connections 3	Edge/Edge	No	
Search Across Bodies Statistics Connections 3	Priority	Include All	
Statistics Connections 3	Group By	Bodies	
Connections 3	Search Across	Bodies	
	Statistic	S	
Active Connections 3	Connections	3	
	Active Connections	3	

TABLE 11
Model (A4) > Connections > Contacts > Contact Regions

1110401 (714) 7 001		tacto - Contact No	9.01.0	
Object Name	Contact Region	Contact Region 2	Contact Region 3	
State		Fully Defined		
	Scope			
Scoping Method	Geometry Selection			
Contact		1 Face		
Target	1 Face			
Contact Bodies	Solid			
Target Bodies	Solid			
Protected	No			
	Definition			
Туре	Bonded			
Scope Mode	Automatic			
Behavior	Program Controlled			

Project* Page 7 of 14

Trim Contact	Program Controlled
Trim Tolerance	10.057 mm
Suppressed	No
	Advanced
Formulation	Program Controlled
Small Sliding	Program Controlled
Detection Method	Program Controlled
Penetration Tolerance	Program Controlled
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
	Geometric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

Mesh

TABLE 12 Model (A4) > Mesh

Object Name	Mesh
State	Solved
Display	
Display Style	Use Geometry Setting
Defaults	
Physics Preference	Mechanical
Element Order	Program Controlled
Element Size	70.0 mm
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (2)
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Fast
Span Angle Center	Coarse
Initial Size Seed	Assembly
Bounding Box Diagonal	4022.6 mm
Average Surface Area	9.5874e+005 mm²
Minimum Edge Length	10.0 mm
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Aggressive Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre

Project* Page 8 of 14

View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Rigid Body Behavior	Dimensionally Reduced
Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	56749
Elements	27165

Static Structural (A5)

TABLE 13 Model (A4) > Analysis

	·			
Object Name	ject Name Static Structural (A5)			
State	Solved			
Definition				
Physics Type	Structural			
Analysis Type	Static Structural			
Solver Target	Target Mechanical APDL			
Options				
Environment Temperature	nt Temperature 22. °C			
Generate Input Only	No			

TABLE 14
Model (A4) > Static Structural (A5) > Analysis Settings

Object Name			
Object Name	Analysis Settings		
State	Fully Defined		
Step Controls			
Number Of Steps	1.		
Current Step Number	1.		
Step End Time	1. s		
Auto Time Stepping	Program Controlled		
Solver Controls			
Solver Type	Program Controlled		
Weak Springs	Off		
Solver Pivot Checking	Program Controlled		
Large Deflection	Off		
Inertia Relief	Off		
Quasi-Static Solution	Off		
Rotordynami	cs Controls		
Coriolis Effect	Off		
Restart Controls			
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	No		
Combine Restart Files	Program Controlled		
Nonlinear Controls			
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		

Moment Convergence	Program Controlled		
Displacement Convergence	Program Controlled		
Rotation Convergence	Program Controlled		
Line Search			
Stabilization	Program Controlled		
	Advanced		
Inverse Option	No		
Contact Split (DMP)	Off		
	Output Controls		
Stress	Yes		
Surface Stress	No		
Back Stress	No		
Strain	Yes		
Contact Data	Yes		
Nonlinear Data	No		
Nodal Forces	No		
Volume and Energy	Yes		
Euler Angles	Yes		
General Miscellaneous	No		
Contact Miscellaneous	No		
Store Results At	All Time Points		
Result File Compression	Program Controlled		
Ana	llysis Data Management		
Solver Files Directory	F:\Project\Ram Tank\T-1340_files\dp0\SYS\MECH\		
Future Analysis	None		
Scratch Solver Files Directory			
Save MAPDL db	No		
Contact Summary	Program Controlled		
Delete Unneeded Files	Yes		
Nonlinear Solution	No		
Solver Units	Active System		
Solver Unit System	nmm		

TABLE 15 Model (A4) > Static Structural (A5) > Loads

	wiodel (A4) > Clatic Citactara (A6) > Loads						
Object Name	Frictionless Support	Frictionless Support 2	Frictionless Support 3	Internal Design Pressure	Fixed Support	Liquid Weight	Frictionless Support 4
State		Fully Defined					
			Scop	e			
Scoping Method							
Geometry	2 Faces	es 1 Face 2 Faces		1 Face			
Definition							
Туре	Frictionless Support		Pressure	Fixed Support	Force	Frictionless Support	
Suppressed							
Define By				Normal To		Components	
Applied By			Surface Effect		Direct		
Loaded Area				Deformed			
Magnitude				1.e-002 MPa			

Project* Page 10 of 14

	(ramped)	
Coordinate System		Global Coordinate System
X Component		0. N (ramped)
Y Component		-21111 N (ramped)
Z Component		0. N (ramped)

FIGURE 1
Model (A4) > Static Structural (A5) > Internal Design Pressure

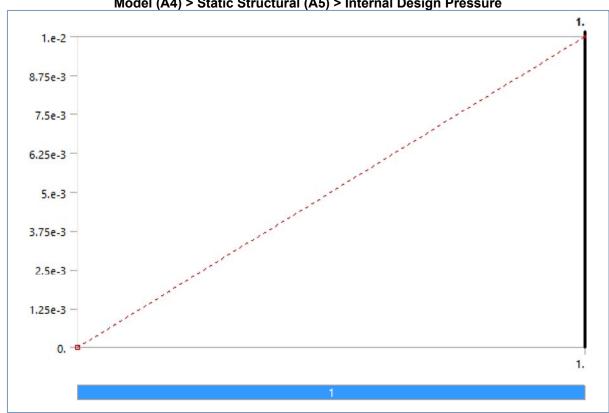
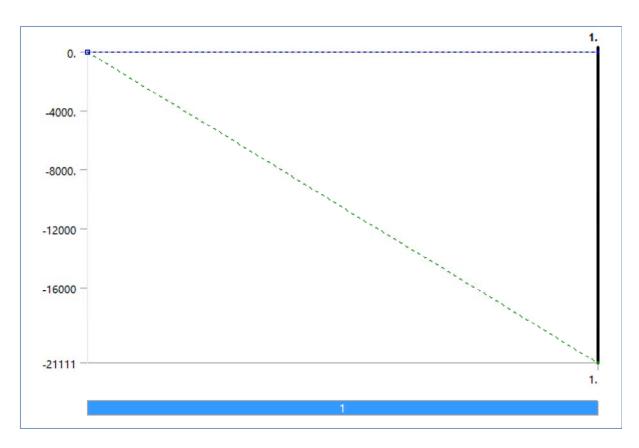



FIGURE 2
Model (A4) > Static Structural (A5) > Liquid Weight

Project* Page 11 of 14

Solution (A6)

TABLE 16 Model (A4) > Static Structural (A5) > Solution

out (At) - Statio Structure						
Object Name	Solution (A6)					
State	Solved					
Adaptive Mesh Ref	inement					
Max Refinement Loops	1.					
Refinement Depth	2.					
Information						
Status	Done					
MAPDL Elapsed Time	1 m 2 s					
MAPDL Memory Used	937. MB					
MAPDL Result File Size	19.688 MB					
Post Processing						
Beam Section Results	No					
On Demand Stress/Strain	No					

TABLE 17
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information
State	Solved
Solution Inform	ation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All

Project* Page 12 of 14

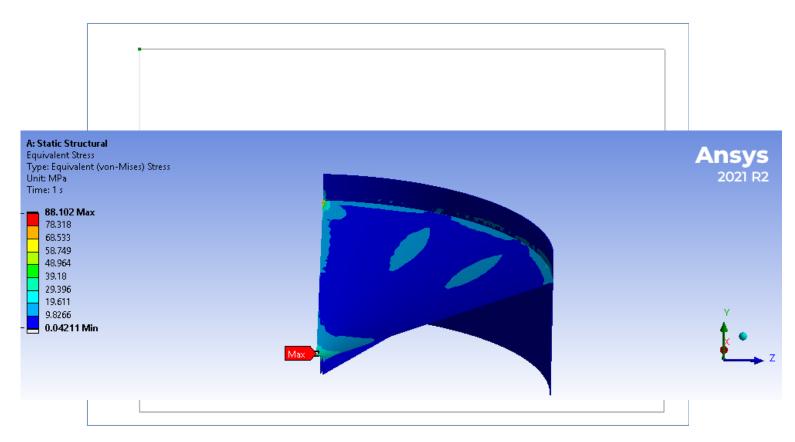

FE Connection Visibility					
Activate Visibility	Yes				
Display	All FE Connectors				
Draw Connections Attached To	All Nodes				
Line Color	Connection Type				
Visible on Results	No				
Line Thickness	Single				
Display Type	Lines				

TABLE 18
Model (A4) > Static Structural (A5) > Solution (A6) > Results

Equivalent Stress
Solved
Scope
Geometry Selection
All Bodies
efinition
Equivalent (von-Mises) Stress
Time
Last
Yes
No
n Point Results
Averaged
No
Results
4.211e-002 MPa
88.102 MPa
4.2563 MPa
Solid
Solid
ormation
1. s
1
1
1

FIGURE 3
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Page 13 of 14 Project*

TABLE 19 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

Time [s]	Minimum [MPa]	Maximum [MPa]	Average [MPa]
1.	4.211e-002	88.102	4.2563

Material Data

Structural Steel

TABLE 20 Structural Steel > Constants

Density	7.85e-006 kg mm^-3
Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	4.34e+005 mJ kg^-1 C^-1
Thermal Conductivity	6.05e-002 W mm^-1 C^-1
Resistivity	1.7e-004 ohm mm

TABLE 21 Structural Steel > Color

Red	Green	Blue
132	139	179

TABLE 22 Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength MPa

TABLE 23

Project* Page 14 of 14

Structural Steel > Compressive Yield Strength

Compressive Yield Strength MPa 218

TABLE 24 Structural Steel > Tensile Yield Strength

Tensile Yield Strength MPa 218

TABLE 25 Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength MPa 460

TABLE 26

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C 22

TABLE 27 Structural Steel > S-N Curve

Cycles	Mean Stress MPa
10	0
20	0
50	0
100	0
200	0
2000	0
10000	0
20000	0
1.e+005	0
2.e+005	0
1.e+006	0
	10 20 50 100 200 2000 10000 20000 1.e+005 2.e+005

TABLE 28 Structural Steel > Strain-Life Parameters

		Ott. Gotal G. Ottoo.	• • • • • • • • • • • • • • • • • • • •	u.u.i.ioto.o	
Strength	Strength	Ductility	Ductility	Cyclic Strength	Cyclic Strain
Coefficient MPa	Exponent	Coefficient	Exponent	Coefficient MPa	Hardening Exponent
920	-0.106	0.213	-0.47	1000	0.2

TABLE 29 Structural Steel > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2.e+005	0.3	1.6667e+005	76923	

TABLE 30 Structural Steel > Isotropic Relative Permeability

Relative Permeability 10000 CLIENT:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDTag No.T-1253END USER:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDDoc. NO.TNK-CSL-T1253-001PROJECT:Tank Inspection and Mechanical CalculationClient / End User doc. No.-ITEM NAMET-1253 STORAGE TANK!REV. No.A

5) <u>Rafter Supported Cone Roof</u>

5.1)

)	<u>Inputs</u>								
	Material Type			=	CS				
	Roof Plate Material			=	SA-36				
	Roof Structure Material			=	SA-36				
	Internal Diameter of tank			=	5.1800	m			
	Outside dia. of Tank @ cu	rb angle		=	5.1980	m			
	Outside radius of Tank @	curb angle		=	2.60	m			
	Outside dia. Of roof plates			=	5.2	m			
	Design Internal Pressure		Pi	=	10.00	kPa			
	Corrosion Allowance (Shel	II)	C.A	=	1.00	mm			
	Corrosion Allowance (Roo	f)	C.A	=	1.00	mm			
	Corrosion Allowance (Wet	ted structure)	C.A	=	1.00	mm			
	Thickness of thinest shell of	course		=	6.00	mm			
	Slope of Roof			=		1:4		Ref: /	API 650 5.10.4.1
	Angle of cone element to h	norizontal		=	15.05	degrees			
	Thickness of Roof Plate Us	sed	t	=	4.5	mm			
	Corroded Thickness	Shall not be	e less than 5 mm	=	3.50	mm	<	5	Not O.K
	Height of Roof		H_R	=	R/tan ⊖				
			H_R	=	0.6946	m			
	Clant height of Doof		ı		2.676	m			
	Slant height of Roof Surface Area of Roof		L _{slant} π x (L' _{SLANT}) ²	=	22.49	m m²			
				$\equiv \frac{Q}{r^2} =$				7.70	1/1
	Weight of Roof	it includes the weight of roof compres	ssion plate	= FAr ²	795	kg	=	7.79	KN
	Weight of Roof(Coroded)			$Pcr = \frac{F_0 A r^{-2}}{Q}$ $Q = \frac{F_0 C^{-2}}{n \pi^2 E}$	618	kg	=	6.06	KN
	Weight of parts welded to		D	=	80.00	kg	=	0.78	KN
	= :	e and its welded attachments nd its welded attachments (Coroded)	D _{LR} D _{LR_CORRODED}	=	874.54 697.98	kg kg	=	8.58 6.85	KN KN
	Unit Load of Roof over hor		- ER_CORRODED	=	0.41	kPa		0.00	TAT .
	Live Load			=	1.00	kPa			
	Gravity load		T1	=	D _L + (L _r 0	r S) +0.4P _e kPa		Ref:	API 650 5.2.2 e
	Gravity load		T2	=		$0.4(L_r \text{ or } S)$		Ref:	API 650 5.2.2 e
				=	0.81	kPa			
	Maximum gravity load,		T	=	1.41	kPa			
	Minimum Yield Strength of	Roof Plate	Fy	=	218.50	Мра			
	Minimum Yield Strength of	Structure	Fy	=	218.50	Мра	(Temp		dification factor r M.3.6 applied)
	Minimum of above yield st		Fy	=	218.50	Мра			11:7
	Product Design Stress/ lea	=	S _d	=	145.67	MPa			
	Allowable stress for structu	ıre	f	=	124.00	Мра	=	18000	psi
						•			-

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.
ITEM NAME T-1253 STORAGE TANK® REV. No. A

5.2) Roof to Shell Joint Detail $Pcr = AFy \left[1 - \frac{Q}{4x^2}\right]$ Detail b Seleted detail of compression ring: Selected size of angle 100 x 100 x 10 Hz.lenght 100.00 Horozontal Length of curb angle vertical length of curb angle V.lenaht 100.00 mm Thickness of selected curb angle leg corroded ť a 9.00 mm Area of selected curb angle A'_a 1710.00 mm² Minimum Size required for curb angle is, Ref: API 650 5.1.5.9 50 X 50 X 5 Minimum area required for curb angle 380.00 Selected curb angle O.K Neutral axis of angle С 50.00 mm Roof location on the angle В 15.00 mm B is less than C, therefore O.K Material of angle CS SA-36 Yield strenght of angle @ design temp 218.50 MPa Thickness of thinnest shell course un-corroded 6.00 t_c mm Thickness of roof plate un-corroded mm 4.50 t_h Inside radius of tank shell Ref: API 650 fig F-2 mm R_c 2590.00 Length of the normal to the roof, R_2 (Rc / sin⊖) 9977.10 Maximum width of participating shell $0.6(R_c X t)^{1/2}$ Ref: API 650 fig F-2 W_c Where, t 74.80 Actual width of participating shell W_{c} 25.00 mm Participating area of shell 150.00 mm A_s Maximum width of participating roof, 0.3 (X R_2 X t_h) $^{1/2}$ and 300 mm Ref: API 650 fig F-2 W_h lesser of 63.57 Actual width of participating roof mm W_h 25.00 Participating area of roof 112.50 mm² A_r Maximum Unstiffened length 250 x t / $(F_v)^{1/2}$ Ref: API 650 fig F-2 where t = 152.21 mm Actual Unstiffened length enter Hz.lenght of angle here mm 2550.00 length of selected angle is less than Le, therfore selection of angle O.K, Note that Unstiffened area is NOT used, instead use area of angle Participating area of unstiffened length A_e N/A mm²

A provided

1972.50

mm²

Provided compression ar (As + Ar + Ae)

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD T-1253 Tag No.

CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD END USER: Doc. NO. TNK-CSL-T1253-001

Tank Inspection and Mechanical Calculation PROJECT: Client / End User doc. No.

ITEM NAME Α T-1253 STORAGE TANK REV. No.

Frangible Roof NO

Minimum required compression area Arequired =A2 884.07 mm² Ref: API 650 F.5.1

Provided compression area at roof-shell joint is GREATER than MINIMUM REQUIRED AREA, therefore compression ring detail O.K.

Minimum required roof-shell compression area A required A_2

> 884.07 mm² A required

5.3) Appendix F

Tank has internal pressure: yes

Appendix F applicable

Horizontal projected Area of roof $\frac{\pi}{4} \times D^2$ A_R

> m^2 20.98

Total upward lifting force, due to internal pressure, $P_i X A_R$

acting on roof ΚN 209.77

Total weight of coroded roof plates ΚN W'_{PT} 6.06

> Since, F_R W'RT (Roof weight)

Refere to Fig-1, of Annex-F API 650, Internal pressure exceeds the weight of corroded roof plates, therefore, Annex-F is applicable

Weight of coroded shell and roof plus attached weight W_T 196.58 ΚN

 F_R Therefore, as per Fig-1, of Annex-F API 650, Tank needs to be mechanically anchored against internal pressure,

and shall comply to F.7. Also as per F.7.1 roof thickness needs to be checked as per API 620. For detail refere to API 620 roof thickness calculation.

 $\frac{A \times Fy \times tan\theta}{2000 \text{ Ps}^3} + \frac{0.00127 \times DLR}{2000 \text{ Ps}^3}$ Establishing internal pressure (MAWP) Ref: API 650 F.4.1 Р $200 x D^2$

> P 21.99 kPa

W_T(Total weight)

Design pressure LESS than P(MAWP) hence condition SATISFIED

Where,

Since,

A(A provided) Provided compression area

Fv Temperature corrected specified yield strenght

 D_{LR} Nominal weight of roof plates plus attached structure

0.000746 x DLR Calculated Failure pressure Ref: API 650 F.7 P_f D^2

 P_f 35.00 kPa

Design pressure LESS than P_f hence condition SATISFIED

0.00127DLR $200D^{2}(P_{i} -$ Minimum required participating compression area Ref: API 650 F.5.1 A, $F_{\nu}(tan\theta)$

against internal pressure mm² A_2 884.07

Hydrostatic Test Pressure kPa Ref: API 650 F.4.4 12.50

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD TNK-CSL-T1253-001 END USER: Doc. NO. Tank Inspection and Mechanical Calculation PROJECT: Client / End User doc. No. ITEM NAME Α T-1253 STORAGE TANK REV. No.

Thickness calculation of roof plates as per F.6

 $(P \times R_t)$ Minimum roof thickness required for internal pressure $\frac{1}{\cos\alpha \times S_d \times E} + C_a$ where, mm 1.94 Ρ is the internal design pressure - minus effect of of corroded roof plate $(F_R - W'_{RT}) / Area =$ 9.60 R is the nominal tank radius R, 2.60 is the half apex angle of cone roof(degrees) а 75.0 degrees is the cosine of half appex angle expressed as a decimal quantity COSα 0.26 , where α is a in radians. cosa = S_d 146 MPa Ε 0.7

5.5) Calculations for Roof support structure

1

Corrosion allowance

mm

Ca

Ca

Dia of Compression Ring 1.35 Developed Radius of Roof 2.68 m Maximum Rafter length 1.983 m $t_{roof_corroded} x (1.5 x F_v / p)$ Maximum Allowable Roof Plate Span b

Where, p = T1.69 ≤ 2.1

Ref: API 650 5.10.4.4

in

80.09

As per 5.10.4.4 Maximum Allowable Roof Plate Span should not be less than 2100 mm, Therefore,

1.69 66.46 b max m More than 1 bay present NO Number of bays 1.00 Rafters along bey 1 (Ring 1)

 R_1 Developed radius of ring 1 2.68 Rafers length L1 1.983

π x Di / b_{max} Minimum number Rafters at shell periphery N_{min}

9.64 Actual number of rafters N rafters 8.00 Actual rafter Spacing b_1 2.03 m

Not O.K b_{max}

Spacing on Compression ring 0.530 m Average width of roof plate $(b_1 + b_2)/2$ 1.282 m

Angle btw rafters 37.18 degrees

 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

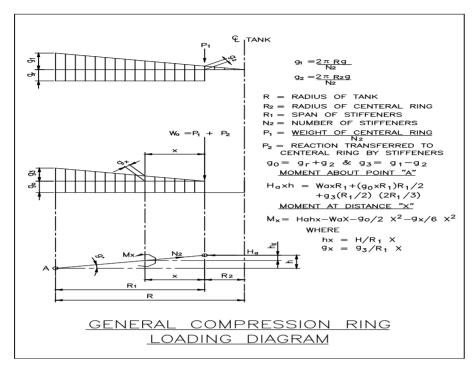
 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

 ITEM NAME
 T-1253 STORAGE TANKU
 REV. No.
 A

Selection of Rafter Size

Corroded properties of R	after:			Section used	=	L65x65x6				
Height of web				H'	=	65.00	mm			
Flange-flange inner fac	e height			Н	=	53.00	mm			
Width of Flange				В	=	65.00	mm			
Thickness of flange				h	=	6.00	mm			
Thickness of Web				b	=	6.00	mm			
Unit weight of (Uncoro	ded)				=	6.85	kg/m	=	0.38	lbs/in
Cross sectional area	Α	=		2xBxh + bxi	H =	1098.00	mm^2			
Area moment of area	lxx	=	H³ b/12 + 2[h	³ B/12 + hB(H+h) ² /4]	=	7.56E+05	mm ⁴	=	1.82	in ⁴
Center of gravity	Ycog	=	H/2 +h		=	32.5	mm			
Section modulus	S_{xx}	=		I _{xx} /Ycog	=	23248.415	mm ³	=	1.42	in ³
Weight of Rafters					=	108.67	Kg	=	1.07	KN
Checking for section	n modulus									
Maximum Rafter Length				L1	=	1.983	m	=	78.07	in
Average width of roof plat	te			(b1+b2)/2	=	1.28	m	=	50.5	in
Total Design Load				T	=	1.41	kPa	=	0.20	psi
U.D.L Load(including unit			Tx(b1+b2)/2 +	unit weight of						
weight of selected rafter)	W	=	rafterx9.81/100	00	=	1.87	KN/m	=	10.70	Lbs/in
Maximum bending mome	nt M _{max}	=		$W \times L_{eff}^{2} / 8$	=	0.92	m-KN	=	8151	Lbs-in
Required section modulus	S	Z	=	M/f	=	7427.43	mm^3	=	0.45	in ³
Provided section modulus	S	Z _{provided}	=	S_{xx}	=	23248.42	mm ³	=	1.42	in ³
Selection of Rafter s	size O.K									
Checking for deflect	ion in rafte	ar.								
Maximum Rafter Span	ion in ranc	<u>.1</u>			=	1.98	m			
Total Load on Rafter+Self	f woight	(U.D.L)		W	=	1.87	KN/m	=	10.70	Lbs/in
	i weigin	(U.D.L)		w L1 x 1000/360	=	5.51		_	10.70	LUS/III
Allowable deflection		ul. 11.26	l Brazilia (adda)		=	3.31	mm			
Deflection in beam both			iy Distributed loa	ad						
Induce Deflection as give			and dante of the	d Design Du Day and W	!!					
(Ref. Chapter-4, Roof Des	sign 4.3 "Proc	ess equipm	ent design Vesse	i nesign by Brownell Yo	ong")					
					=	0.51	mm	=	0.020	in

Induced deflection in rafters is less than allowable, therefore rafter is O.K


 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

 ITEM NAME
 T-1253 STORAGE TANK!
 REV. No.
 A

Design of Central Ring

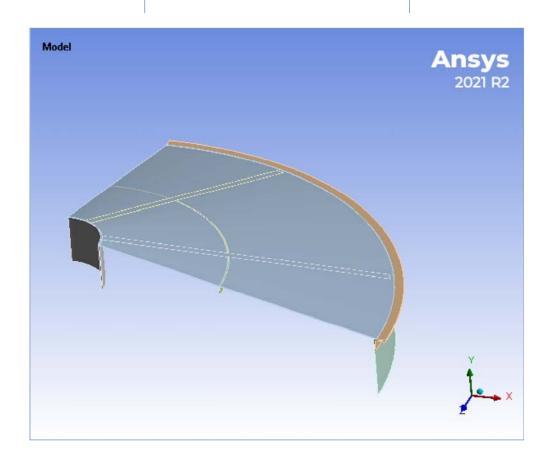
Live Load on roof L _r =		Lr	=	1.00	KN/m ²			
Load of roof plate $D_r =$		Dr	=	0.43	KN/m2		(Total weight of roof (D _{LR})+ rafter)/developed ared of roof	
	g =	Lr + Dr	=	1.43	KN/m2		·	
I.R of tank		R	=	2.60	m			
Radius of central compression ring		R_2	=	0.68	m	=	2.21	ft
Span of Rafter			=	1.98	m			
Unit weight of one Rafter		g_{r}	=	6.85	kg/m	=	0.07	KN/m
Total weight of Rafter			=	108.67	kg	=	1.07	KN
Total weight of Rafter/area			=	0.05	KN/m2			
Weight of Central Ring		Wr	=	0.097706	KN			
Number of rafter		N_2	=	8.00				
Height of Roof at center		h	=	0.69	m			
Radius of tank - radius of								
compression ring		$R_1 = R - R_2$	=	1.92	m			
	$g_1 =$	2π x R xg / N2	=	2.92	kN/m			
	g ₂ =	$2\pi \times R_2 \times g / N2$	=	0.76	kN/m			

CLIENT:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Tag No.	T-1253
END USER:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Doc. NO.	TNK-CSL-T1253-001
PROJECT:	Tank Inspection and Mechanical Calculation	Client / End User doc. No.	-
ITEM NAME	T-1253 STORAGE TANK	REV. No.	Α_

Calculation of load transferred at joint	of stiffener and central ring,	$Wa = P_1 + P_2$		0.52	KN				
Weight of Central Ring ,Wr per stiffene	er	$P_1 = Wr/N$	=	0.01221	KN				
Load transferred to central ring by raft	ers,	$P_2 = g_2 \times R_2$	=	0.51	KN				
		$g_0 = g_r + g_2$	=	0.82	KN/m				
		$g_3 = g_1 - g_2$	=	2.16	KN/m				
Considering the equilibrium and taking	Moments about point A.	На	=	$\frac{W_a x R_1 + \frac{(g_0)}{2}}{2}$	$\frac{x R_1)R_1}{2} + g_3(\frac{R_2}{2})$	$(\frac{R_1}{3})$			
			=	5.57	KN				
Therefore, Radial Load transferred to r	ing through stiffeners,	На	=	5.57	KN	=	1.25	kips	
Moment transferred to Ring		М	=	(Ha $R_2/2$) (cot 180/N ₂ - N	$_{2}/\pi$)			
			=	0.06	Kip ft	=	0.08	KNm	
Thrust		T	=	Ha/2 (cot 18	30/N ₂)				
			=	1.51	Kips	=	6.72	KN	
Design of compression ring									
	Location of Centroid	С	=	50	mm				
			=	50.00	mm				
	Moment of Inertia	I							
			=	2.07E+06	mm ⁴				
		A	=	105730.865	mm^2	=	0.10573	m^2	
	Section Modulus		=	23248.4	mm ³	=	2.3E-05		m^3
		$f_b = M / Z$	=	3257.44	KN/m ²				
Allowable Bending Stress		Fb = 0.6 Fy	=	131100	KN/m ²				
		fc = T / A	=	63.5327597	KN/m ²				
Allowable Compression Stress		Fc = 0.5 Fy	=	109250	KN/m ²				
		f _b /Fb+fc/Fc		=	0.03				

As fb/Fb+fc/Fc<1 Ok

CLIENT:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Tag No.	T-1253
END USER:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Doc. NO.	TNK-CSL-T1253-001
PROJECT:	Tank Inspection and Mechanical Calculation	Client / End User doc. No.	-
ITEM NAME	T-1253 STORAGE TANK	REV. No.	Α


Selection of Columns								
Load supprted by central column	P = (T*Ar + weight of rate	fters+weight of column)	/2 =	20.37	KN			
Length of Central columns		L	=	21.64	m	=	851.91	m
Minimum radius of gyration		r	=	L/180				
		r	=	120.21	mm	=	4.733	in
Selected column: combo section IPE 1	180							
unit weight of column			=	18.8	kg/m	=	1.05275	lb/in
Minimum Moment of inertia of combo	section	I	=	13853099.9	mm^4	=	33.2822	
Cross section area of combo section		Α	=	4780	mm^2	=	7.40901	
Radius of gyration of combo section		I/A^0.5	=	53.8	mm	=	2.12	in
Allowable compressive stress for column		f	=	$\frac{Sd}{1 + \left(\frac{L^2}{Sd x n}\right)}$	<u></u>			
			=	44.32	Мра	=	6429	psi
Actual Induced Stress		f _{actual}	=	P/a				
				4.26	Мра			
Since f _{actual} < f, central column provide	ed is O.K.							
Total weight of rafters and colum			=	1015.5	kg			

Note: As per manual calculation as thickess has shown not adequate so to confirm the thickness FEA been carried out and found the thickness is adequate.

Project* Page 1 of 13

Project*

Project* Page 2 of 13

Contents

- Units
- Model (B4)
 - o **Geometry**
 - Parts
 - o Materials
 - o Coordinate Systems
 - o <u>Symmetry</u>
 - Symmetry Region
 - o Connections
 - Contacts
 - Contact Regions
 - o Mesh
 - o Static Structural (B5)
 - Analysis Settings
 - Loads
 - Solution (B6)
 - Solution Information
 - Results
- Material Data
 - o Structural Steel

Units

TABLE 1

Unit System	Metric (mm, t, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (B4)

Geometry

TABLE 2 Model (B4) > Geometry

\ /							
Object Name	Geometry						
State	Fully Defined						
Definition							
Source	F:\Project\Ram Tank\T-1341.scdoc						
Туре	SpaceClaim						
Length Unit	Meters						
Element Control	Program Controlled						
Display Style	Body Color						
Boundir	ng Box						
Length X	2696. mm						
Length Y	1104.3 mm						
Length Z	2696. mm						
Prope	rties						
Volume	5.4487e+007 mm³						
Mass	0.42772 t						
Scale Factor Value	1.						
Statis	tics						
Bodies	9						
Active Bodies	9						
Nodes	155110						
Elements	21434						
Mesh Metric	None						

Update C	ptions					
Assign Default Material	No					
Basic Geometry Options						
Solid Bodies	Yes					
Surface Bodies	Yes					
Line Bodies	Yes					
Parameters	Independent					
Parameter Key						
Attributes	Yes					
Attribute Key						
Named Selections	Yes					
Named Selection Key						
Material Properties	Yes					
Advanced Geor	netry Options					
Use Associativity	Yes					
Coordinate Systems	Yes					
Coordinate System Key						
Reader Mode Saves Updated File	No					
Use Instances	Yes					
Smart CAD Update	Yes					
Compare Parts On Update	No					
Analysis Type	3-D					
Mixed Import Resolution	None					
Import Facet Quality	Source					
Clean Bodies On Import	No					
Stitch Surfaces On Import	None					
Decompose Disjoint Geometry	Yes					
Enclosure and Symmetry Processing	Yes					

TABLE 3 Model (B4) > Geometry > Parts

			Wodel (64) > Geometry	- Paris				
Object Name	Solid1	Solid2	Solid3	Solid4	Solid5	Solid6	Solid7	Solid8	Solid9
State	Meshed								
			Grap	hics Propertie	es				
Visible				١	′es				
Transparency					1				
	-			Definition					
Suppressed				l	No				
Stiffness Behavior				Fle	exible				
Coordinate System				Default Coor	dinate System				
Reference									
Temperature				By Env	rironment				
Treatment				N	one				
				Material					
Assignment				Structu	ıral Steel				
Nonlinear Effects				١	⁄es				
Thermal Strain Effects	Thermal Strain Effects Yes								
	!		В	ounding Box					
Length X	385. mm	2622.3 mm	110.25 mm	2696. mm	2596. mm	902.79 mm	2059.4 mm	732.69 mm	519.3 mm
Length Y	393.67 mm	604.31 mm	65. mm	100. mm	500. mm	656.4	1 mm	65.	mm
Length Z	385. mm	2622.3 mm	513.75 mm	2696. mm	2596. mm	2065.3 mm	905.22 mm	735.92 mm	112.53 mm
				Properties					
Volume	2.3418e+006 mm³	2.7361e+007 mm³	3.3062e+005 mm³	7.8333e+006 mm³	1.2219e+007 mm³	1.697	e+006 m³	6.6863e+005 mm³	3.3802e+005 mm³
Mass	1.8383e-002 t	0.21479 t	2.5954e-003 t	6.1491e-002 t	9.5921e-002 t	1.3321	e-002 t	5.2488e-003 t	2.6535e-003 t
Centroid X	241.86 mm	1132.3 mm	1318.8 mm	1670.7 mm	1650.4 mm	585.71 mm	1379.9 mm	935.89 mm	262.05 mm
Centroid Y	401.63 mm	227.18 mm	306.37 mm	-28.517 mm	-250. mm	283.68 mm	283.69 mm	306.53 mm	306.68 mm
						-	-		

Centroid Z	-241.86 mm	-1132.3 mm	-256.73 mm	-1670.7 mm	-1650.4 mm	1365.7 mm	551.57 mm	-928.07 mm	-1317.4 mm
Moment of Inertia	717.5 t·mm²	70583 t·mm²	59.103 t·mm²	3390.2 t·mm²	6985.2 t·mm²	5778.3 t·mm²	10.739 t·mm²	470.3 t·mm²	1.078 t·mm²
Moment of Inertia	502.48 t·mm²	2.069e+005 t·mm²	58.408 t·mm²	80424 t·mm²	1.2206e+005 t·mm²	5784.6 t·mm²		473.36 t·mm²	62.013 t·mm²
Moment of Inertia	256.32 t·mm²	1.3718e+005 t·mm²	1.0301 t·mm²	77150 t·mm²	1.1907e+005 t·mm²	10.741 t·mm²	5778.2 t·mm²	6.5785 t·mm²	62.729 t·mm²
				Statistics					
Nodes	4296	87446	491	13316	33816	69	16	959	954
Elements	574	12324	54	1794	4624	92	24	10)8
Mesh Metric	Mesh Metric None								
	CAD Attributes								
PartTolerance:	·			0.000	000001				
Color:143.175.143									

TABLE 4 Model (B4) > Materials

Object Name	Materials					
State	Fully Defined					
Statistics						
Materials	1					
Material Assignments	0					

Coordinate Systems

TABLE 5
Model (B4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System
State	Fully Defined
De	finition
Туре	Cartesian
Coordinate System ID	0.
(Drigin
Origin X	0. mm
Origin Y	0. mm
Origin Z	0. mm
Direction	onal Vectors
X Axis Data	[1. 0. 0.]
Y Axis Data	[0. 1. 0.]
Z Axis Data	[0. 0. 1.]

Symmetry

TABLE 6 Model (B4) > Symmetry

wodei (B4)	> Symmetry		
Object Name	Symmetry		
State	Fully Defined		

TABLE 7
odel (B4) > Symmetry > Symmetry Regio

Model (B4) > Symmetry > Symmetry Region						
Object Name	Symmetry Region	Symmetry Region 2	Symmetry Region 3	Symmetry Region 4		
State	te Fully Defined					
		Scope				
Scoping Method	hod Geometry Selection					
Geometry	5 Faces	1 Face	4 Faces	1 Face		
	Definition					
Scope Mode	Manual					
Туре	Type Symmetric					
Coordinate System	m Global Coordinate System					
Symmetry Normal	X Axis					
Suppressed		No				

Connections

Project* Page 5 of 13

TABLE 8 Model (B4) > Connections

Object Name	Connections			
State	Fully Defined			
Auto Detection				
Generate Automatic Connection On Refresh	Yes			
Transparency				
Enabled	Yes			

TABLE 9
Model (B4) > Connections > Contacts

Wodel (B4) > Connection	ons > Contacts				
Object Name	Contacts				
State	Fully Defined				
Definition					
Connection Type	Contact				
Scope					
Scoping Method	Geometry Selection				
Geometry	All Bodies				
Auto Detec	tion				
Tolerance Type	Slider				
Tolerance Slider	0.				
Tolerance Value	9.9236 mm				
Use Range	No				
Face/Face	Yes				
Face-Face Angle Tolerance	75. °				
Face Overlap Tolerance	Off				
Cylindrical Faces	Include				
Face/Edge	No				
Edge/Edge	No				
Priority	Include All				
Group By	Bodies				
Search Across	Bodies				
Statistic	S				
Connections	21				
Active Connections	21				

TABLE 10

Model (R4) > Connections > Contacts > Contact Regions

Model (B4) > Connections > Contacts > Contact Regions											
Object Name	Contact Region	Contact Region 2	Contact Region 3	Contact Region 4	Contact Region 5	Contact Region 6	Contact Region 7	Contact Region 8	Contact Region 9	Contact Region 10	Contact Region 11
State					F	Fully Define	d				
					Scop	е					
Scoping Method	Geometry Selection										
Contact	1 Face	2 Fa	aces				1 Face		,		3 Faces
Target	1 Face		2 Faces			1 F	ace		2 Faces	1 Face	3 Faces
Contact Bodies		Solid1					Solid2				Solid3
Target Bodies	Solid2	Solid6	Solid7	Solid3	Solid4	Solid5	Solid6	Solid7	Solid8	Solid9	Solid7
Protected						No					
					Definit	ion					
Туре						Bonded					
Scope Mode						Automatic					
Behavior					Pro	gram Contr	olled				
Trim Contact					Pro	gram Contr	olled				
Trim Tolerance		9.9236 mm									
Suppressed		No									
	Advanced										
Formulation	Program Controlled										
Small Sliding		Program Controlled									
Detection Method		Program Controlled									
Penetration		Program Controlled									

Tolerance	
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
	Geometric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

TABLE 11
Model (B4) > Connections > Contacts > Contact Regions

Model (B4) > Connections > Contacts > Contact Regions										
Object Name	Contact	Contact	Contact	Contact	Contact	Contact	Contact	Contact	Contact	Contact
	Region 12	Region 13	Region 14	Region 15			Region 18	Region 19	Region 20	Region 21
State	State Fully Defined									
	r				Scope					
Scoping Method					Geometry	Selection				
Contact			1 F	ace			3 Faces		1 Face	
Target				ace			3 Faces		1 Face	
Contact Bodies	Solid3		Solid4		Sol	id5	So	lid6	Solid7	Solid8
Target Bodies	Solid8	Solid5	Solid6	Solid7	Solid6	Solid7	Solid8	Solid9	Solid8	Solid9
Protected					N	0				
				D	efinition					
Туре					Bon	ded				
Scope Mode					Auto	matic				
Behavior					Program (Controlled				
Trim Contact					Program (Controlled				
Trim Tolerance					9.923	6 mm				
Suppressed					N	О				
				Α	dvanced					
Formulation		Program Controlled								
Small Sliding	Program Controlled									
Detection		Program Controlled								
Method	Program Controlled									
Penetration	Program Controlled									
Tolerance		Fiogram Controlled								
Elastic Slip		Program Controlled								
Tolerance		Frogram Controlled								
Normal Stiffness		Program Controlled								
Update Stiffness		Program Controlled								
Pinball Region	Program Controlled									
i ilibali region	Geometric Modification									
Contact				Comen	io mounica					
Geometry		None								
Correction	TOTIO									
Target										
Geometry	None									
Correction										

Mesh

TABLE 12 Model (B4) > Mesh

Woder (B4) > Westi					
Object Name	Mesh				
State Solved					
Display					
Display Style	Use Geometry Setting				

Project* Page 7 of 13

Defaults					
Physics Preference	Mechanical				
Element Order	Program Controlled				
Element Size	30.0 mm				
Sizing					
Use Adaptive Sizing	Yes				
Resolution	Default (2)				
Mesh Defeaturing	Yes				
Defeature Size	Default				
Transition	Fast				
Span Angle Center	Coarse				
Initial Size Seed	Assembly				
Bounding Box Diagonal	3969.4 mm				
Average Surface Area	2.9313e+005 mm ²				
Minimum Edge Length	5.0 mm				
Quality					
Check Mesh Quality	Yes, Errors				
Error Limits	Aggressive Mechanical				
Target Quality	Default (0.050000)				
Smoothing	Medium				
Mesh Metric	None				
Inflation					
Use Automatic Inflation	None				
Inflation Option	Smooth Transition				
Transition Ratio	0.272				
Maximum Layers	5				
Growth Rate	1.2				
Inflation Algorithm	Pre				
View Advanced Options	No				
Advanced					
Number of CPUs for Parallel Part Meshing	Program Controlled				
Straight Sided Elements	No				
Rigid Body Behavior	Dimensionally Reduced				
Triangle Surface Mesher	Program Controlled				
Topology Checking	Yes				
Pinch Tolerance	Please Define				
Generate Pinch on Refresh	No				
Statistics					
Nodes	155110				
Elements	21434				

Static Structural (B5)

TABLE 13 Model (B4) > Analysis

Model (B4) > Analysis					
Object Name	Static Structural (B5)				
State	Solved				
Definiti	Definition				
Physics Type	Structural				
Analysis Type	Static Structural				
Solver Target	Mechanical APDL				
Options					
Environment Temperature	22. °C				
Generate Input Only	No				

TABLE 14
Model (B4) > Static Structural (B5) > Analysis Setting

Model (B4) > Static Structural (B5) > Analysis Settings				
Object Name	Analysis Settings			
State	Fully Defined			
Step Controls				
Number Of Steps	1.			
Current Step Number	1.			
Step End Time	1. s			
Auto Time Stepping	Program Controlled			

Project* Page 8 of 13

Solver Controls					
Solver Type	Program Controlled				
Weak Springs	Off				
Solver Pivot Checking	Program Controlled				
Large Deflection	Off				
Inertia Relief	Off				
Quasi-Static Solution	Off				
	otordynamics Controls				
Coriolis Effect	Off				
	Restart Controls				
Generate Restart Points	Program Controlled				
Retain Files After Full Solve	No				
Combine Restart Files	Program Controlled				
	Nonlinear Controls				
Newton-Raphson Option	Program Controlled				
Force Convergence	Program Controlled				
Moment Convergence	Program Controlled				
Displacement Convergence	Program Controlled				
Rotation Convergence	Program Controlled				
Line Search	Program Controlled				
Stabilization	Program Controlled				
Advanced					
Inverse Option	No				
Contact Split (DMP)	Off				
Output Controls					
Stress	Yes No				
Surface Stress Back Stress	No No				
	Yes				
Strain Contact Data	Yes				
Nonlinear Data	No				
Nodal Forces	No				
Volume and Energy	Yes				
Euler Angles	Yes				
General Miscellaneous	No				
Contact Miscellaneous	No				
Store Results At	All Time Points				
Result File Compression	Program Controlled				
	alysis Data Management				
Solver Files Directory	F:\Project\Ram Tank\T-1340_files\dp0\SYS-1\MECH\				
Future Analysis	None				
Scratch Solver Files Directory					
Save MAPDL db	No				
Contact Summary	Program Controlled				
Delete Unneeded Files	Yes				
Nonlinear Solution	No				
Solver Units	Active System				
Solver Unit System	nmm				
,					

TABLE 15

Model (B4) > Static Structural (B5) > Loads							
Object Name	Internal Design pressure	Frictionless Support	Frictionless Support 2	Frictionless Support 3	Frictionless Support 4	Live Load	
State		Fully Defined					
			Scope				
Scoping Method							
Geometry	18 Faces	5 Faces	1 Face	4 Faces	1 Face	2 Faces	
			Definition				
Туре	Pressure		Frictionle	ss Support		Pressure	
Define By	Normal To					Normal To	
Applied By	Surface Effect					Surface Effect	
Loaded Area	Deformed					Deformed	
Magnitude	1.e-002 MPa (ramped)					1.e-003 MPa (ramped)	

Project* Page 9 of 13

Suppressed No

FIGURE 1 Model (B4) > Static Structural (B5) > Internal Design pressure

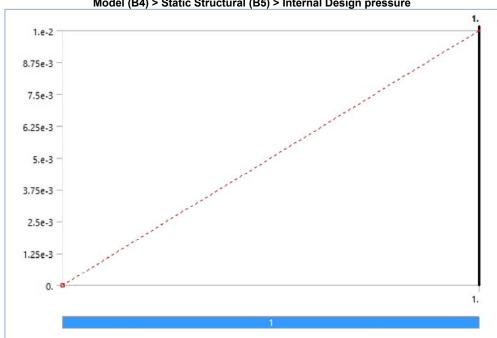
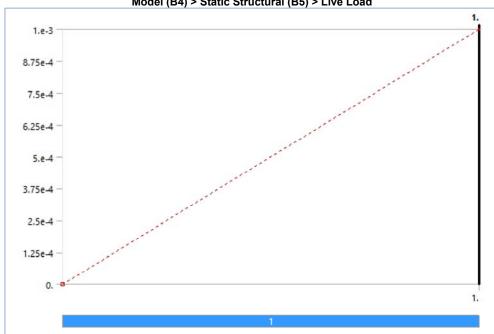



FIGURE 2 Model (B4) > Static Structural (B5) > Live Load

Solution (B6)

TABLE 16 Model (B4) > Static Structural (B5) > Solution

Solution (B6)				
Solved				
Adaptive Mesh Refinement				
1.				
2.				

Project* Page 10 of 13

Information				
Status	Done			
MAPDL Elapsed Time	7 m 4 s			
MAPDL Memory Used	2.0166 GB			
MAPDL Result File Size	41.188 MB			
Post Processing				
Beam Section Results	No			
On Demand Stress/Strain	No			

TABLE 17
Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

Object Name	Solution Information			
State	Solved			
Solution Information				
Solution Output	Solver Output			
Newton-Raphson Residuals	0			
Identify Element Violations	0			
Update Interval	2.5 s			
Display Points	All			
FE Connection Visibility				
Activate Visibility	Yes			
Display	All FE Connectors			
Draw Connections Attached To	All Nodes			
Line Color	Connection Type			
Visible on Results	No			
Line Thickness	Single			
Display Type	Lines			

TABLE 18 Model (B4) > Static Structural (B5) > Solution (B6) > Results

Object Name Equivalent Stress Total Deformation Scope Scoping Method Geometry Selection Geometry Selection Geometry Selection All Bodies Definition Type Equivalent (von-Mises) Stress Total Deformation By Time Display Time Last Last Calculate Time History Yes Identifier Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Ilteration Number	Model (B4) > Static Structural (B5) > Solution (B6) > Results					
Scope Scoping Method Geometry Selection Definition Type Equivalent (von-Mises) Stress Total Deformation By Time Display Time Display Time Calculate Time History Identifier Last Versults Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Average No Results Minimum Maximum 267.38 MPa 1.949 mm 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid7 Solid5 Solid2 Information Time Information 1. s Load Step Substep 1	Object Name Equivalent Stress Total Deformatio					
Scoping Method Geometry Selection Geometry Selection Definition Type Equivalent (von-Mises) Stress Total Deformation By Time Display Time Last Calculate Time History Yes Identifier Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	State	Solved				
Selection Company	Scope					
Definition Type Equivalent (von-Mises) Stress Total Deformation By Time Last Display Time Last Calculate Time History Yes Identifier Suppressed No Integration Point Results Display Option Averaged Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Scoping Method	Geometry Selection	ction			
Type Equivalent (von-Mises) Stress Total Deformation By Time Display Time Last Calculate Time History Yes Identifier Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Geometry	All Bodies				
By Time Display Time Last Calculate Time History Yes Identifier No Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1		Definition				
Display Time Last Calculate Time History Yes Identifier No Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Туре	Equivalent (von-Mises) Stress	Total Deformation			
Calculate Time History Yes Identifier No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Ву	Time				
Identifier Suppressed No Integration Point Results	Display Time	Last				
Suppressed No Integration Point Results Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Calculate Time History	Yes				
Integration Point Results Display Option Averaged Average Across Bodies No Results Substep 1 Substep Subst	Identifier					
Display Option Averaged Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Suppressed	Suppressed No				
Average Across Bodies No Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1		Integration Point Results				
Results Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Display Option	Averaged				
Minimum 9.5905e-002 MPa 0. mm Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Average Across Bodies	No				
Maximum 267.38 MPa 1.949 mm Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1		Results				
Average 10.676 MPa 0.75107 mm Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Minimum	9.5905e-002 MPa	0. mm			
Minimum Occurs On Solid7 Solid5 Maximum Occurs On Solid2 Information Time 1. s Load Step 1 Substep 1	Maximum	267.38 MPa	1.949 mm			
Maximum Occurs On Solid2 Information 1. s Load Step 1 Substep 1	Average	10.676 MPa	0.75107 mm			
Information Time 1. s Load Step 1 Substep 1	Minimum Occurs On	Solid7	Solid5			
Time 1. s Load Step 1 Substep 1	Maximum Occurs On	Solid2				
Load Step 1 Substep 1		Information				
Substep 1	Time	1. s				
	Load Step	1				
Iteration Number 1	Substep	1				
	Iteration Number	Iteration Number 1				

FIGURE 3 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

Project* Page 11 of 13

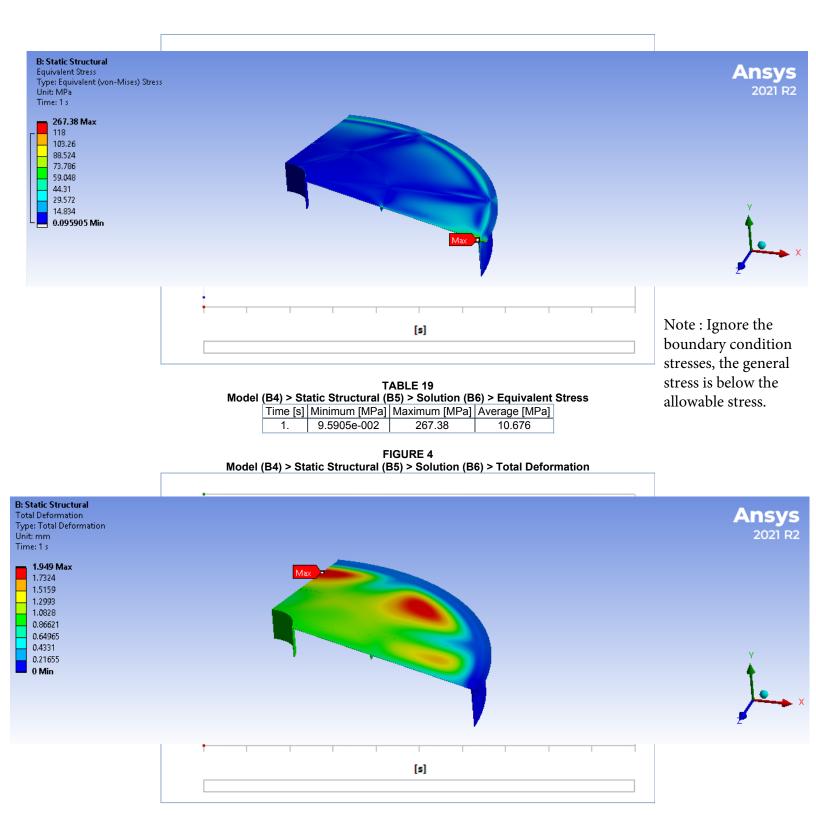


TABLE 20

Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation

Time [s] | Minimum [mm] | Maximum [mm] | Average [mm]

1.

1.949

0.75107

Material Data

Structural Steel

Project* Page 12 of 13

TABLE 21 Structural Steel > Constants

Density	7.85e-009 tonne mm^-3
Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	4.34e+008 mJ tonne^-1 C^-1
Thermal Conductivity	6.05e-002 W mm^-1 C^-1
Resistivity	1.7e-004 ohm mm

TABLE 22 Structural Steel > Color

Red	Green	Blue
132	139	179

TABLE 23

Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength MPa
0

TABLE 24

Structural Steel > Compressive Yield Strength

Compressive Yield Strength MPa 218

TABLE 25

Structural Steel > Tensile Yield Strength

Tensile Yield Strength MPa 218

TABLE 26

Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength MPa 460

TABLE 27

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C 22

TABLE 28 Structural Steel > S-N Curve

Alternating Stress MPa	Cycles	Mean Stress MPa
3999	10	0
2827	20	0
1896	50	0
1413	100	0
1069	200	0
441	2000	0
262	10000	0
214	20000	0
138	1.e+005	0
114	2.e+005	0
86.2	1.e+006	0

TABLE 29

Structural Steel > Strain-Life Parameters

Strength Coefficient MPa		Ductility Coefficient	Ductility Exponent	Cyclic Strength Coefficient MPa	Cyclic Strain Hardening Exponent
920	-0.106	0.213	-0.47	1000	0.2

TABLE 30

Structural Steel > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2.e+005	0.3	1.6667e+005	76923	

TABLE 31 Structural Steel > Isotropic Relative Permeability

Project* Page 13 of 13

Relative Permeability 10000

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME T-1253 STORAGE TANKII REV. No. A

Design of Shell for Intermediate Wind Girder

6.1 <u>INPUTS:</u>

6.0

Inside dia. of tank D_i 5.180 m Height of shell Н 20.944 m Design Wind speed V 79.00 (Ref: API 650 5.2.1 k) Km/h Nominal dia. of Tank D 5.192 m Nominal thickness of thinnest shell course t uniform Buckling in coroded condition NO (Ref: API 650 5.9.7.1 note 1)

Factors for caclutating velocity pressure, Vacuum(lbf/ Κz K zt K_d G (mph) ft2) including vacuum Factors as per API 650 5.9.7.1 Note 2 1.04 0.95 120 0.85 Factors as per ASCE 7 1.04 0.95 49.09 1.15 0.85 0.00

(Ref: API 650 5.9.7.1 note 2)

6.2 CALCULATION

 $0.00256 K_Z K_{Zt} K_d V^2 I G + internal vacuum$ The velocity pressure + internal vacuum The velocity pressure, including internal 35.96 lbf/ft² (Using API 650 5.9.7.1 note2 factors) vacuum, as per API 650 1.72 kPa The velocity pressure, including internal vacuum, as 5.96 lbf/ft2 (using clien's specs) per client's specs 0.29 kPa (Using API 650 5.9.7.1 note 2.d) p_1/p_2 1.00

As modified total pressure is less than or equal to 1.72 kPa, therefore ratio p1/p2 will not be taken into account

Max. height of the unstiffened shell H_1 = $9.47 t_{tc} \times \sqrt{(t/D)^3 \times (190/V)^2}$ (Ref: API 650 5.9.7.1)

= 398.45 m (Annex M reduction factor is included)

Appendix M temperature factore = 0.976 (Ref: API 650 Annex M.6)

Coroded thickness of thinnest shell course t = 6.00 mm

Height of tranformed shell:

Course Number		Actual Shell Course Height Thickness		Transformed shell course height
		W	t _{uactual}	$W_{tr} = W\sqrt{(t_{uniform}/t_{actual})^5}$
		(m)	(mm)	(mm)
1		1524	12	269.41
2		1524	10	424.97
3		1524	10	424.97
4		1524	8	742.40
5		1524	8	742.40
6		1524	8	742.40
7		1800	6	1800.00
8		1800	6	1800.00
9		1800	6	1800.00
10		1800	6	1800.00
11		1800	6	1800.00
12		1800	6	1800.00
13		1000	6	1000.00
Top Angle		100.00	9.00	36.29
	Sum =	16344 mm	Sun	n = 15182.85
	=	16.344 m	Н	T = 15.18

Since, H_T < H_1 , therefore wind girders are NOT REQUIRED.

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD END USER: PROJECT: Tank Inspection and Mechanical Calculation

T-1253 STORAGE TANK

Tag No. Doc. NO. T-1253

Α

TNK-CSL-T1253-001

Client / End User doc. No. REV. No.

Seismic Analaysis

7.1 <u>Inputs</u>

ITEM NAME

7.0

0.2 s (short period) spetral response acceleration	S_S	=	0.046		A	s per data sheet
1 s spetral response acceleration	S_1	=	0.02		A	s per data sheet
Design Level Peak Ground Acceleration Parameter	S_0	=	0.02		A	s per data sheet
Seismic User Group as per	SUG	=	III		Та	ble E-5, API 650
Site Class		=	D		A	s per data sheet
Maximum design product level	Н	=	20.94	m		
Nominal tank diameter	D	=	5.192	m		
	D/H	=	0.248			
Thickness of bottom shell course (coroded)	t_s	=	11.0	mm	Re	ef: API 650 E.2.2
Thickness of Annulas plate(coroded)	ta	=	-1.000	mm	Re	ef: API 650 E.2.2
Specific gravity	G	=	1.3			
Weight of product	W_{ρ}	=	5,655	KN		
Total weight of tank shell and appurtenances	W_s	=	216.80	KN	(Un-corroded)	
Total weight of fixed tank roof including permanent attachment	W_r	=	FALSE	KN	(Un-corroded)	
Weight of the bottom	Wf	=	17.77	KN	(Un-corroded)	
Height from bottom of the tank shell to shell's center of gravity	Xs	=	10.47	m		
Height from bottom of the tank shell to roof center of gravity	X _r	=	21.1755	m		
Minimum yield strenght of bottom annular plate	F_y	=	253.46	MPa		
Product design stress of lowest shell course	S_d	=	145.67	MPa		
Internal design pressure	P_{i}	=	10.000	kPa.g		
Determining Spectral Acceleration Parameters						
Regional-dependent transition period for longer period	T_L	=	4	sec	Ref:	API 650 E.4.6.1

7.2

(T = 0.2 seconds),

Regional-dependent transition period for longer period	T_L	=	4	sec
Acceleration-based site coeficient (at 0.2 sec period)	F_a	=	1.6	Ref: API 650 Table E-1
Velocity based site coefficient (at 1.0 sec period)	F_{v}	=	2.4	Ref: API 650 Table E-1
Scaling factor	Q	=	0.67	Ref: API 650 E.4.6.1
Spectral response accelration at one second,	S_{D1}	=	$(Q \times F_V \times S_1)$	
		=	0.0322	
Spectral response accelration at short periods	S _{DS}	=	(Q x F_a x S_s)	

0.04931

CLIENT:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Tag No.	T-1253
END USER:	CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD	Doc. NO.	TNK-CSL-T1253-001
PROJECT:	Tank Inspection and Mechanical Calculation	Client / End User doc. No.	-
ITEM NAME	T-1253 STORAGE TANK	REV. No.	A

Spectral response accelration at zero second,	S_{D0}	=	$(Q \times S_0)$
		=	0.013
	T_S	=	S_{D1}/S_{DS}
		=	0.652
	T_O	=	$0.2~\mathrm{x}~\mathrm{S}_\mathrm{D1}/\mathrm{S}_\mathrm{DS}$
		=	0.130

7.3 <u>Determining Spectral Acceleration Coefficients</u>

7.4

Effective convective(sloshing) weight

Assuming Tank is	Self-ancl	hored			
Force reduction factor for the convective mode	R_{wi}	=	3.5		Ref: API 650 Table E-4
Force reduction factor for the impulsive mode	R _{wc}	=	2		Ref: API 650 Table E-4
Importance factor	1	=	1.5		Ref: API 650 Table E-5
Impulsive design response spectrum aceleration coeficient	A_i	=	SDS(I/ Rwi)		Ref: API 650 E.4.6.1
		=	0.021 ≥	0.007	
Convective(sloshing) period	Тс	=	$1.8 \times \mathrm{K_s} \times \sqrt{D}$		
		=	2.371 Se	ec	
			0.578		
Where,	Ks	=	$\sqrt{\tanh \frac{3.68 x H}{D}}$		
			Ų D		
		=	0.578		
Cofficient to adjust the spectral acceleration from 5% - 0.5% damping	K	=	1.5		Ref: API 650 E.2.2
Since,	Тс	≤	T_L		
	Ac	=	KSD1 x (TL/Tc^2)	?) x (I/Rwc)	Ref: API 650 Eq E.4.6.1-4
Convective design response spectrum aceleration coeficient	Ac	=	0.01526 ≤	A_i	Condition satisfied
Seismic Overturning Moment Ref: API 650 E.6.1.	5				
Type of foundation			Slab		
Seismic overturning moment at the base of tank shell	Ms	=	ν[Ai(WiXis + Ws.	sXs + WrXr]2 + [Ad	c(WcXcs)]2
		=	1200.50 KM	N-m	Ref: API 650 E.6.1.5-2
Where,				D-	
Effective impulsive weight	W_{i}	=	$W_i = \left[1.0 - 0.218\frac{L}{R}\right]$	$\frac{D}{H} _{W_p}$ With D/H	< 1.333
				111-	Ref: API 650 E.6.1.1
		=	5349.38 KN	N	
Center of action for effective impulsive weight for slab moment	Xis	=	[0.5 - 0.06 x D/H] x	H With D/H	< 1.333

 W_c

10.160

322.43

m

KN

 $0.230 \frac{D}{H} \tanh\left(\frac{3.67H}{D}\right) W_p$

Ref: API 650 E.6.1.2.2

Ref: API 650 E.6.1.1

 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

REV. No.

ΚN

Α

Ref: API 650 E.6.1-1

Ref: API 650 E.6.1.2 Center of action for effective convective weight for slab moment Xcs 19.53 m Seismic Base Shear Ref: API 650 E.6.1 Design base shear due to impulsive component from Vi $A_i (W_s + W_f + W_f + W_i)$ Ref: API 650 E.6.1-2 effective weight of tank and contents 118.01 ΚN Design base shear due to convective component of V_{c} 4.92 ΚN effective sloshing weight

7.6 Resistance to seismic overtuning forces Ref: API 650 E.6.2.1

T-1253 STORAGE TANK

ITEM NAME

7.5

Total seismic base shear

Vertical earthquake acceleration coefficient, 0.47 x S_{DS} 0.023 Ref: API 650 E.2.2 A_{ν} 99 x t_a x $\sqrt{F_y$ x H x G(1 - 0.4*A_v) Force resisting uplift in annulus region W_a Wa' -8.19 KN/m Wa" 201.1 x H x D x G 28.16 KN/m Wa" W_a lesser of (Wa' and Wa") KN/m W_a -8.19 so now, the thikness,ta, coresponding with final Wa is -1.0000 ťa mm Anchorage Ratio $D^2[w_t(1-0.4Av) + wa - 0.4wint]$ -212.620 J ≤0.785

No calculated uplift under the design seismic overturning moment. The tank is self-anchored Where,

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD T-1253 Tag No. END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001 PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No. ITEM NAME Α REV. No. T-1253 STORAGE TANK

Roof load acting on shell per unit cercumferential length 0.00 KN/m Tank and roof weight acting at base per unit cercumferential length 13.29 KN/m W, Uplift load due to product pressure per unit cercumferential length 12.98 KN/m

7.6.1 Minimum Anchorage Resistance Ret: API 650 E.6.2.1.2

′1.273 *x Mrw* -wt x (1 - 0.4 x Av)Calculated design uplift load on anchors per unit W_{AB} circumferential length 48.72 KN/m Anchor seismic load P_{AR} $W_{AB}(xD/n_a)$ 66.22 ΚN

Where,

Shell Compression in: Self-Anchored Tank Ref: API 650 E.6.2.2

 $\left(w_t(1+0.4Av) + \frac{1.273 \times Mrw}{D^2}\right) \frac{1}{1000ts}$ The maximum longitudal shell compression stress at the bottom бс of shell when there is no calculated up $J \le 0.785$ 6.373 when $GHD^2/t^2 =$ 6.065785 < F_c 109.47 MPa 126.73 O.K 44 Seismic allowable longitudal stress б Shell compression O.K Since, Fc

 n_a

12

Ref: API 650 E.6.1.4 **Dynamic Liquid Hoop Forces** 7 7

For D/H < 1.333 Y ≥3.894 and

Impulsive hoop membrane force in tank shell N_i $2.6 \times A_i \times G \times D^2$ 1.93 N/mm

1.85 x Ac x G x $D^2 \left[\frac{3.68(H-Y)}{D} \right]$ Convective hoop membrane force in tank shell N_c

0.00000

Product hudrostatic membrane hoop load at the base of tank N_h 4.9 x (Y -0.3) x D x G

708.72 N/mm

 $Nh \pm \sqrt{N_i^2 + N_c^2 + ((A_v x Nh)/2.5)^2}$ Total hoop stress, including lateral and vertical seismic acceleration бт $\sigma_h + \sigma_s$ 65.05 Mpa

lesser of 1.333 x S $_d$ and 0.9 x F $_v$ Allowable seismic hoop stress

> 194.17 Мра

N/mm

Since, бT 65.05 194.17 Total hoop stress is O.K CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD

CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD END USER:

Tag No. Doc. NO.

T-1253 TNK-CSL-T1253-001

Tank Inspection and Mechanical Calculation PROJECT:

Client / End User doc. No.

Α

ITEM NAME T-1253 STORAGE TANK

REV. No.

Minimum required thickness for seismic hoop stress

 $Nh \pm \sqrt{N_i^2 + N_c^2 + ((A_v x Nh)/2.5)^2}$ Allowable seismic hoop stress

3.69 mm

mary of dynamic hoon stresses

Summary of dynamic hoop stresses										
Course No.	Design liquid height	Ni	Nc	Nh	бт	Allowable hoop stress	Required thickness			
	Y(m)	N/mm	N/mm	N/mm	Мра	Мра	t _{seismic}			
1	21.729	1.93	0.00	708.72	65.05	194.17	3.69			
2	20.205	1.93	0.00	658.32	73.86	194.17	3.42			
3	18.681	1.93	0.00	607.91	68.21	194.17	3.16			
4	17.157	1.93	0.00	557.51	80.43	194.17	2.90			
5	15.633	1.93	0.00	507.11	73.17	194.17	2.64			
6	14.109	1.93	0.00	456.70	65.91	194.17	2.38			
7	12.285	1.93	0.00	396.38	80.10534	194.17	2.06			
8	10.485	1.93	0.00	336.85	68.10306	194.17	1.75			
9	8.685	1.93	0.00	277.315104	56.11	194.17	1.44			
10	6.885	1.93	0.01	217.783632	44.11	194.17	1.14			
11	6.885	0.00	0.01	217.783632	43.96	194.17	1.13			
12	5.085	0.00	0.03	158.25216	-156.78	194.17	0.82			
13	-0.300	0.00	1.22	-19.843824	21.08	194.17	-0.10			

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD T-1253 Tag No.

CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD END USER: Doc. NO. TNK-CSL-T1253-001

Tank Inspection and Mechanical Calculation PROJECT: Client / End User doc. No. ITEM NAME Α T-1253 STORAGE TANK REV. No.

Wind Loads(Overturning Stability)

8.1 <u>Inputs</u>

8.0

Roof Type				Rafter Supp	ported Cone R	Poof	
Nominal diameter (2 m has been added to tank dia, so to	accommodate wind loads)	D_W	=	7.19	m		
Design wind speed		V	=	79.00	Km/h		
Height of shell		H_S	=	20.94	m		
Height of roof above shell (1.1 m has been added to tro	of height, so to accommodate wind loads)	H_R	=	1.795	m		
Height of tank		H_T	=	22.739	m		
Horizontal projected area of roof $\frac{\pi}{4}$ (iii)	nternal diameter)²	A_R	=	21.07	m^2		
Vertical projected area of shell (including roof height abo	ve shell)	A_s	=	$D_W x H_T$	=	163.54	m^2
Internal pressure		P_i	=	10.00	kPa		
Weight of shell (nominal plate weight only)		Ws	=	195.98	KN		
Weight of liquid present		W_L	=	0.00			
Weight of roof (nominal plate weight+welded str	ucture and nozzles)	W_R	=	6.85	KN		
Pressure combination factor		F_P	=	0.40		(Ref: A	PI 650, 5.2.2)

Calculation 8.2

8.2.2

Wind pressures 8.2.1 (Ref: API 650, 5.2.1.K.1)

Wind pressure on vertical projected area of tank	(Horizontal Wind Pressure)	P_{WS}	=	0.86 x (V/1	90)2
			=	0.15	kPa
Wind pressure on horizontal projected area of roof	ed area of roof (Vertical Wind Pressure) $P_{WR} = \frac{1}{2}$ $= \frac{(Ref: API 650, 5.2.1.K.2)}{P_{WR} + P_{DESIGN}} = \frac{1}{2}$	1.44 x (V/1	1.44 x (V/190) ²		
			=	0.25	kPa
<u>Uplift pressure on roof</u> (Ref: A	PI 650, 5.2.1.K.2)				
Wind plus internal pressure on roof	P WR +P DESIGN		=	10.25	kPa
1.6 times the Design pressure determined as per F.4.1		P _{F.4.1}	=	35.19	kPa

≤ Requirement of API 650, 5.2.1.K.2 is Satisfied.

 $P_{F.4.1}$

8.2.3 Overturning Moments about Shell-Bottom joint

Overturning moment about shell-bottom joint from horizontal wind pressure,	M_{WS}	=	$P_{WS} X A_{S X}$	$H_T/2$
		=	276.43	KN-m
Overturning moment about shell-bottom joint from vertical wind pressure	M_{WV}	=	$P_{WR} \times A_R \times D$	$D_W/2$
		=	18.87	KN-m
Combined Moment due to wind pressure	M_W	=	295.30	KN-m
Moment about shell-bottom joint from design internal pressure	М _{рі}	=	P _i x A _R x D _w	/2
, , ,	ρ,	=	757.83	KN-m

As " $P_{WR} + P_{DESIGN}$ " is

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME

T-1253 STORAGE TANK®

REV. No.

A

Moment about shell-bottom joint from nominal weight of shell

 $M_{DL} = 0.5 \times D_W \times W_S$ Note: Only shell weight is considered to get more stringent result = 704.74 KN-m

Moment about shell-bottom joint from liquid weight $M_F = 0$ KN-m Zero liquid weight will give worst case

scenario

Force about shell-bottom joint from nominal weight of roof plus any attached structure

 $M_{DLR} = 0.5 \times D_W \times W_R$ = 24.62 KN-m

9.2.4 Wind shear force

Wind force on shell $F1 = P_{WS} \times DW \times H_S$

= 22.40 KN

Wind force on roof $F2 = P_{WR} \times 0.5 \times Dw \times H_R$

= 1.61 KN

Total wind force on tank F1 + F2 = 24.00 KN

For tank to be structurally stable without anchorage, the following uplift criteria shall satisfy:

Criteria 1: $0.6 \text{ Mw} + \text{Mpi} < \text{MDL} / 1.5 + \text{M}_{DLR}$ Criteria 2: $\text{Mw} + \text{F}_{p} \text{ Mpi} < (\text{MDL} + \text{MF}) / 2 + \text{M}_{DLR}$ Criteria 3: Mws + Fp (MPi) < MDL / 1.5 + MDLR

For Criteria 1: $0.6 \text{ M}_{\text{w}} + \text{M}_{\text{pi}}$ < $\text{M}_{\text{Dl}} / 1.5 + \text{M}_{\text{DLR}}$

935 > 494.45 **Not satisfied**

For Criteria 2: $M_w + 0.4 M_{pi}$ < (MDL +MF) / 2 + M_{DLR}

598.43 > 376.99 **Not satisfied**

For Criteria 3: $M_{ws} + F_{p} (M_{Pi})$ $< M_{DL}/1.5 + M_{DLR}$

579.56 > 494.45 **Not satisfied**

Since, All criterias are not satisfied

Therefore the tank, Needs to be mechanically anchored against wind load

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

Α

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME T-1253 STORAGE TANK® REV. No.

9.0 Anchor Bolts

Need to be Anchored against Wind loads (5.11) (YES/NO)

Needs to be anchored against internal pressure (Appendix F) (YES/NO)

Needs to be anchored against seismic loads (Appendix E) (YES/NO)

YES

Anchorage to be Provided (YES/NO)

YES

Material of anchor bolt used A 36 Gr.36 Class 8.8 Minimum yield strenght of the anchor bolt Ref: API 650 Table 5.21a 660 Мра Corrosion Allowance for anchor bolt 1.5 mm Minimum nominal anchor bolt diameter including C.A 26.5 mm Ref: API 650 5.12.5 M27 Selected bolt size O.K Root diameter of anchor bolt 21.46 mm corroded Root area 361.53 corroded Ref: API 650 5.12.4 mm^2 Number of anchor bolts 12 6 Specing between anchors Spacing b/w anchors is satisfactory 1.36 : API 650 5.12.3 m

Table 5-21a - (SI) Uplift Loads

Uplift Load case	Net Uplift Formula, U(N)	Uplift Load, U (N)	Load/bolt t _b (N)	Stress/ bolt (Mpa)	*Allowable Anchor Bolt Stress (Mpa)	Remarks
Design Pressure	[(P _i x D ² x 785] - W ₁	14,246	1187	3	104	O.K
Test pressure	[(P ₁ x D ² x 785] - W ₃	39,132	3261	9	139	O.K
Wind load	$P_{WR} \times D^2 \times 785 + [4 \times M_{WH}/D] - W_2$	20,872	1739	5	200	0.K
Seismic Load	$[4 \times M_{rw}/D] - W_2 \times (1 - 0.4 \times A_v)$	729,347	60779	168	200	O.K
Design pressure + Wind	[(F _p x P _i + P _{WR}) x D ² x 785] + 4 x [M _{ws} /D] - W ₁	102,356	8530	24	139	O.K
Design pressure + Seismic	$[(F_p \times P_1 \times D^2 \times 785] + 4 \times [M_{rw}/D] - W_1(1 - 0.4 \times A_v)]$	813,992	67833	188	200	O.K
Frangibilty Pressure	[(3 x P _f x D ² x 785] - W ₃	N/A	N/A	N/A	250	N/A

Governing Uplift Load case Design pressure + Seismic Governing Uplift Load 813,992 Ν Where, Vertical earthquake acceleration coefficient, 0.47 x S_{DS} 0.023 A_{ν} Tank Diameter D 5.192 m Minimum yield strenght of the bottom shell course F_{ty} Ref:: API 650, Table 5.21a 218.50 Mpa Minimum yield strenght of the anchor bolt Fy 250 Мра Tank height Н 20.944 m Overturning moment about shell-bottom joint from horizontal wind pressure, M_{WS} 276.43 KN-m M_{rw} Seismic overturning moment at the base of tank shell 1200.50 KN-m Design pressure 10.000 kPa(g)

CLIENT:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDTag No.T-1253END USER:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDDoc. NO.TNK-CSL-T1253-001PROJECT:Tank Inspection and Mechanical CalculationClient / End User doc. No.-ITEM NAMET-1253 STORAGE TANKREV. No.A

Tank Falling under F.1.3 of AF	PI 650			NO	
Test pressure	(to be filled with water)	Pt	=	12.500	kPa(g)
Wind uplift pressure on roof		P_{WR}	=	0.25	kPa
Wind pressure on shell		P_{WS}	=	0.15	kPa
Roof plate thickness		t _h	=	4.5	mm
Roof plate thickness (coroded		t_{h_c}		3.5	mm
Dead load of shell + Dead loa (corroded)	d of roof plates & other dead loads acting on shell	W ₁	=	197366	N
Dead load of shell + other dea on shell <i>(corroded)</i>	d loads acting on shell, including roof plates weight acting	W_2	=	197366	N
Un-corroded shell +Roof & oth (Un-corroded)	er dead load acting on shell	W_3	=	225382	N

 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

 ITEM NAME
 T-1253 STORAGE TANK
 REV. No.
 A

1**0**.0 <u>Anchor Chair</u>

Reference: AISI: Steel Plate Engine	ering Data - Volume 2 -	Part VII						
Top-plate width along the Shell		a	=	11.811	in	=	300	mm
Top-plate width along the radial direction (includ	ing	b	=	e + lenght of ar	nchor hole/2 + f			
R.P thickness)			=	9.41	in	=	239.0	mm
Top-plate thickness		C _{actual}	=	0.79	in	=	20	mm
Height of Chair		h	=	9.84	in	=	250	mm
Nominal Anchor bolt diameter		d	=	1.18	in	=	30	mm
Root diameter of anchor bolt		d_R	=	0.88	in		22.31	mm
Maximum Allowable anchor bolt load(root area of anchor bolt)	of bolt X yield strenght o	F P1	=	21.32	kips	=	96.91	kN
3 x Anchor bolt load(Governing uplift load/Bolt)		P2	=	14.00	kips	=	63.62	KN
3xSeismic load P _{AB}		P3	=	-1.83	kips	=	-8.33	KN
Design Load	P = lesser of P1 and	d Max(P2 & P3) =	19.88	kips	=	90.38	kN
Maximum Load on upwind side		Р	=	19.88	kips	=	90.383	kN
Calculated gusset plate thickness		j cal	=	0.56	in	=	14.30	mm
Actual gusset plate thickness		j actual	=	0.79	in	=	20	mm
For taper gusset;								
Top width of gusset		k1	=	9.41	in	=	239	mm
Bottom width of gusset	Q =	k2	=	3.94	in	=	100	mm
Average width of gusset		k	=	6.67	in	=	169.50	mm
Bolt Circle diameter		B.C.D	=	209.1	in	=	5311	mm
Corrosion allowance for anchor attachments			=	1.6	mm			
Weight of anchor chairs			=	114	kg			
			- Jmin	a a a a a a a a a a a a a a a a a a a				

ND USER:		PECIALTIES (S					Dut	S. NO.			INK-CSL-1
ROJECT:		tion and Mech	anical Calcula	ation				nt / End User do	oc. No.		
EM NAME	T-1253 STOF	RAGE TANK					REV	′. No.			
No	ominal dia. of tank				D	=	204.41	in	=	5192	mm
	utside dia. of tank				D_{o}	=	204.61	in	=	5197	mm
	ean Inside radius of tank				R	=	102.20	in	=	2596.0	mm
	eight of shell				H_s	=	824.57	in	=	20944	mm
ra	dial projection of Annular	/bottom plate fro	om OD of tank		Q	=	3.94	in	=	100.0	mm
Ra	adius of gyration of shell				r	=	$1/4 \times \sqrt{(D_0^2)^2}$	- +D _i ²)			
						=	72.30	in			
Si	ize of hole for anchor bolt	:			width	=	1.42	in	=	36	mm
					length	=	1.77	in	=	45	mm
	Alias in a company (A. a.		-1-14		Δ	=	0.866 x d +	0.572			
1 0 .1 <u>M</u>	<u> Iinimum Anchor I</u>	ooit eccent	<u>ricity</u>		e _{min1}	=	1.59	in			
					e _{min2}	=		of anchor bolt h	olo/2		
					∨min2	=	4.82	in	OIE/Z		
					e_{min}	=	max. of e _{mir}				
					SIIIII	=	4.82	in	=	122.50	mm
Δα	ctual anchor bolt eccentric	∼itv			e _{actual}	=	5.96	in	=	151.5	mm
	actual is greater than	-	therefore	selection (0.70			101.0	
ū	J.	,									
1 0 .2 <u>Di</u>	istance form outside	of top-plate	to the hole e	<u>edge</u>	f_{min}	=	d/2 +1/8				
						=	0.72	in	=	18.2	mm
					f_{actual}	=	2.56	in	=	65.0	mm
f _{ac}	is greater than	n f _{min}	therefore	selection	O.K.						
1 0 .3 <u>M</u>	<u> Iinimum Distance</u>	e b/w vertic	al plates		g_{min}	=	d + 1				
						=	2.18	in	=	55.40	mm
Us	sed distance b/w vertical	plates			g_{used}	=	5.91	in	=	150	mm
	is greater than OP PLATE:	1 g _{min}	therefore	selection (O.K.						
	aximum Recommended S	Stress as per AIS	SI		S_1	=	25	ksi		172.4	Мра
all	lowable stress of top plate	e of anchor chair			S_2	=	22	ksi	=	155.0	Мра
Ma	aximum Stress for ancho	r chair top plate			S_{max}	=	22	ksi		155.0	Мра
Co	onsidering Top-plate as a	beam with parti	ally fixed ends,	with a portion	n of the total a	anchor bolt	load distributed	along part of sp	an,		
SO	o, thickness calculated on	Max. stress is,			C _{cal}	=	$\sqrt{P/(S_{max} x)}$	f _{actual}) x (0.375	g _{used} - 0.22	$d_R)$	
						=	0.899	in	=	22.83	mm
				Since,	0.787	<	0.899				

Tag No.

Doc. NO.

T-1253

TNK-CSL-T1253-001

CLIENT:

END USER:

CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD

CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD

CLIENT:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDTag No.T-1253END USER:CHEMICAL SPECIALTIES (SINGAPORE) PTE LTDDoc. NO.TNK-CSL-T1253-001PROJECT:Tank Inspection and Mechanical CalculationClient / End User doc. No.-ITEM NAMET-1253 STORAGE TANKIREV. No.A

10.5 Stress above the top of chair

Calculated max. stress, which is combination of bending & direct stress, S $= \frac{\frac{P \, x \, e}{t^2} \left[\frac{1.32 \, x \, Z}{\frac{1.43 \, x \, a \, x \, h^2}{R \, x \, t} + (4 \, x \, a \, x \, h^2)^{0.333}} + \frac{0.031}{\sqrt{R \, x \, t}} \right]}{\frac{1.0}{\sqrt{R \, x \, t}}}$ Where, reduction factor, Z, is $Z = \frac{\frac{0.177 \, x \, a \, x \, m}{\sqrt{R \, x \, t}} \left(\frac{m}{t} \right)^2 + 1.0}{= 0.86}$ $S = \frac{56.78}{\sqrt{R \, x \, t}} = \frac{1.32 \, x \, Z}{\sqrt{R \, x \, t}} + \frac{0.031}{\sqrt{R \, x \, t}} + \frac{0.031}{\sqrt$

Actual calculated stress at Top-plate is more than used Max. recommended stress.

10.6 CHAIR HEIGHT

Used height of chair h = 9.843 in

Condition 1: Bottom thickness less than 0.375 in and governing case is seismic, than height of chair shall be greater or equal to 12 inch

Condition 2: Bottom thickness less than 0.375 in and wind speed is greater than 100 mph, than height of chair shall be greater or equal to 12 inch.

Conclusion: As all the criteria of either of above conditions are not met, therefore

Minimum recommended chair height $h_{min} = 6$ in Max. Recommended chair height $h_{max} = 3a$ = 35.43 in Since, 9.843 > 6 0.K, as actual chair height exceeds the minimum required 9.84 < 35.43 0.K, as chair height is less the maximum recommended height

Used Chair height is satisfactory

10.7 VERTICAL SIDE PLATES / GUSSET PLATES:

	Requirement 1							
Min. recommended gusset plate thickness	\dot{J}_{min}	=	Max{ 0.5,	[0.04)	x(h-c)] }	whichever is greater		
		=	0.6 in	=	14.300	mm		
Actual gusset plate thickness	j _{actual}	=	0.8 in	=	20	mm Satisfactory		
	Requirement 2							
	j x k	>=	P/25					
	5.25	>	0.80			Satisfactory		
Gusset plate used is satisfactory								
	Requireme	ent 3						
	L/r	<=	86.6					
Since, radius of gyration for gusset	r	=	$\sqrt{(j^2/12)}$			Ref: Brownell & Young: Eq.10.42		
		=	0.23		in			
And, height of gusset is	L	=	9.84		in			
Then,	43.301	<	86.60					
Gusset plate used is satisfactory								

 CLIENT:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Tag No.
 T-1253

 END USER:
 CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD
 Doc. NO.
 TNK-CSL-T1253-001

 PROJECT:
 Tank Inspection and Mechanical Calculation
 Client / End User doc. No.

 ITEM NAME
 T-1253 STORAGE TANK®
 REV. No.
 A

10.7 Loads on Weld:

Verical load $W_V = P/(a + 2h)$

= 0.63 kips/in

 $W_H = Pxe/(a x h + 0.667 x h^2)$

= 0.66 kips/in

 $W = \sqrt{W_v^2 + W_H^2}$

= 0.91 kips/in

For weld size 0.24 in the allowable load therefore is,

9.6w ≥ W

Since, 2.27 ≥ 0.91

Weld size is O.K

CLIENT: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Tag No. T-1253

END USER: CHEMICAL SPECIALTIES (SINGAPORE) PTE LTD Doc. NO. TNK-CSL-T1253-001

PROJECT: Tank Inspection and Mechanical Calculation Client / End User doc. No.

ITEM NAME T-1253 STORAGE TANKII REV. No. A

Weight Summary

11

Part No.	Part List	Thicknesses / Size (mm)	Kg	KN	Part No.	Part List	Size
1	Shell Plates	12, 10, 10, 8, 8, 8, 6, 6, 6, 6, 6,	19,977	195.98			Size M27 & Quantity 12 B.C.D 5310.625 mm
2	Top compression Angle	100 x 100 x 10	244	2.39			
3	Intermediate Winder Girders/ Vacuum Stiffeners	N/A	0	0.00			
4	Staircase / Ladder (~)	-	400	3.92			
4	Shell Nozzles (~)	-	1,000	9.81			
5	Weight of anchor chairs		114	1.12			
	Total weight of Shell		22,235	213			
6	Roof plates	4.5	795	8			
7	Weight of roof support structure		109	1			
8	Roof appurtenanaces (~)	-	80	1			
	Total weight of Roof		983	10			
9	Bottom Plates(sketch plates)	10	1,760	17			
10	Annular Plates	N/A	0.00	0			
	Total Weight of Bottom		1,760	17			
	Total Empty Weight of Tank		24,979	245			
	weight of during hydrotest (full tank Ht)		466,406	4,575			
	weight of tank during operation with Iquid uptill Design liquid level		598,819	5,874			